Skip to main content

Advertisement

Log in

Astrocyte Activation: A Key Step in Rotenone Induced Cytotoxicity and DNA Damage

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes are the most abundant glial cells, which provide metabolic support for neurons. Rotenone is a botanical pesticide of natural origin, known to exhibit neurotoxic potential via inhibition of mitochondrial complex-I. This study was carried out to explore the effect of rotenone on C6 cells. The cell line C6 derived from rat glioma cells represents astrocyte-like cell. C6 cells were treated with rotenone (0.1, 1 and 10 μM) for 4 h. The effect of rotenone was studied on cell survival (MTT reduction and PI uptake); free radicals (ROS and RNS) and DNA damage (comet assay and Hoechst staining). The glial cell activation and apoptotic cell death was evaluated by expression of Glial fibrillary acidic protein (GFAP) and caspase-3 respectively. The treatment with rotenone resulted in decreased cell survival and increased free radical generation. Altered nuclear morphology and DNA damage were evident following rotenone treatment in Hoechst staining and Comet assay. Rotenone elevated expression of GFAP and caspase-3 that indicates glial cell activation and apoptosis, respectively. We further studied the effect of melatonin, an antioxidant, on the observed toxic effects. Co-incubation of antioxidant, melatonin (300 μM), significantly suppressed rotenone induced above-mentioned effects in C6 cells. Inhibitory effects of melatonin suggest that free radicals play a major role in rotenone induced astrocyte activation and cellular toxicity leading to apoptosis of astroglial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DNA:

Deoxyribonucleic acid

EDTA:

Ethylenediamine tetraacetic acid

BSA:

Bovine serum albumin

PBS:

Phosphate buffer saline

PI:

Propidium iodide

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SCGE:

Single cell gel electrophoresis

LMP:

Low melting point

GFAP:

Glial fibrillary acidic protein

References

  1. Radad K, Rausch WD, Gille G (2006) Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem Int 49:379–386

    Article  PubMed  CAS  Google Scholar 

  2. Cicchetti F, Drouin-Ouellet J, Gross RE (2009) Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci 30:475–483

    Article  PubMed  CAS  Google Scholar 

  3. Kitamura Y, Inden M, Miyamura A, Kakimura J, Taniguchi T, Shimohama S (2002) Possible involvement of both mitochondria and endoplasmic reticulum-dependent caspase pathways in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurosci Lett 333:25–28

    Article  PubMed  CAS  Google Scholar 

  4. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    PubMed  CAS  Google Scholar 

  5. Swarnkar S, Singh S, Mathur R, Patro IK, Nath C (2010) A study to correlate rotenone induced biochemical changes and cerebral damage in brain areas with neuromuscular coordination in rats. Toxicology 272:17–22

    Article  PubMed  CAS  Google Scholar 

  6. Watabe M, Nakaki T (2004) Rotenone induces apoptosis via activation of bad in human dopaminergic SH-SY5Y cells. J Pharmacol Exp Ther 311:948–953

    Article  PubMed  CAS  Google Scholar 

  7. Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99

    Article  PubMed  CAS  Google Scholar 

  8. Sriram K, O’Callaghan JP (2005) Signaling mechanisms underlying toxicant-induced gliosis. In: Aschner M, Costa LG (eds) The role of Glia in neurotoxicity, 2nd edn. CRC Press, Boca Raton, pp 141–171

    Google Scholar 

  9. Eddleston M, Mucke L (1993) Astrocytes in infectious and immune-mediated diseases of the central nervous system. FASEB J 7:1226–1232

    PubMed  Google Scholar 

  10. Zhou Y, Wang Y, Kovacs M, Jin J, Zhang J (2005) Microglial activation induced by neurodegeneration: a proteomic analysis. Mol Cell Proteomics 4:1471–1479

    Article  PubMed  CAS  Google Scholar 

  11. Rice-Evans C, Burdon R (1993) Free radical–lipid interactions and their pathological consequences. Prog Lipid Res 32:71–110

    Article  PubMed  CAS  Google Scholar 

  12. Bissel MG, Rubinstein LJ, Bignami A, Herman MM (1974) Characterization of the rat C6 glioma maintained in organ culture systems. Production of glial fibrillary acidic protein in the absence of gliofibrillogenesis. Brain Res 82:77

    Article  Google Scholar 

  13. Esposito E, Iacono A, Muia C, Crisafulli C, Mattace-Raso G, Bramanti P, Meli R, Cuzzocrea S (2008) Signal transduction pathways involved in protective effects of melatonin in C6 glioma cells. J Pineal Res 44:78–87

    PubMed  CAS  Google Scholar 

  14. Feng Z, Zhang J (2004) Protective effect of melatonin on β-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic Biol Med 37:1790–1801

    Article  PubMed  CAS  Google Scholar 

  15. Swarnkar S, Tyagi E, Agrawal R, Singh MP, Nath C (2009) A comparative study on oxidative stress induced by LPS and rotenone in homogenates of rat brain areas. Environ Toxicol Pharmacol 27:219–224

    Article  PubMed  CAS  Google Scholar 

  16. Wang XJ, Xu JX (2005) Possible involvement of Ca2 + signaling in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurosci Lett 376:127–132

    Article  PubMed  CAS  Google Scholar 

  17. James SJ, Slikker W III, Melnyk S, New E, Pogribna M, Jernigan S (2005) Thimerosal neurotoxicity is associated with glutathione depletion, protection with glutathione precursors. Neurotoxicology 26:1–8

    Article  PubMed  CAS  Google Scholar 

  18. Brana C, Benham C, Sundstrom L (2002) A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Res Protocols 10:109–114

    Article  CAS  Google Scholar 

  19. Ryu JK, Nagai A, Kim J, Lee MC, McLarnon JG, Kim SU (2003) Microglial activation and cell death induced by the mitochondrial toxin 3-nitropropionic acid, in vitro and in vivo studies. Neurobiol Dis 12:121–132

    Article  PubMed  CAS  Google Scholar 

  20. Peshavariya HM, Dusting GJ, Selemidis S (2007) Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic Res 41:699–712

    Article  PubMed  CAS  Google Scholar 

  21. Buschini A, Alessandrini C, Martino A, Pasini L, Rizzoli V, Carlo-Stella C, Poli P, Rossi C (2002) Bleomycin genotoxicity and amifostine [WR-2721] cell protection in normal leukocytes vs. K562 tumoral cells. Biochem Pharmacol 63:967–975

    Article  PubMed  CAS  Google Scholar 

  22. Abramoff M, Magelhaes P, Ram S (2004) Image processing with image. J Biophotonics Int 11:36–42

    Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AI, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  24. Talpade DJ, Greene JG, Higgins DS, Greenamyre JT Jr (2000) In vivo labeling of mitochondrial complex I (NADH: ubiquinone oxidoreductase) in rat brain using [(3)H] dihydrorotenone. J Neurochem 75:2611–2621

    Article  PubMed  CAS  Google Scholar 

  25. Zhang HM, Zhang Y, Zhang BX (2011) The role of mitochondrial complex III in melatonin-induced ROS production in cultured mesangial cells. J Pineal Res 50:78–82

    Article  PubMed  CAS  Google Scholar 

  26. Lin AM, Ho LT (2000) Melatonin suppresses iron-induced neurodegeneration in rat brain. Free Radic Biol Med 28:904–911

    Article  PubMed  CAS  Google Scholar 

  27. Chao CC, Hu SX, Ehrlich L, Peterson PK (1995) Interleukin-1 and tumor necrosis factor-α synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-d-aspartate receptors. Brain Behav Immun 9:355–365

    Article  PubMed  CAS  Google Scholar 

  28. Bonmann E, Suschek C, Spranger M, Kolb-Bachofen V (1997) The dominant role of exogenous or endogenous interleukin-1 beta on expression and activity of inducible nitric oxide synthase in rat microvascular brain endothelial cells. Neurosci Lett 230:109–112

    Article  PubMed  CAS  Google Scholar 

  29. Liu B, Hong JS (2003) Role of microglia in inflammation mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1–7

    Article  PubMed  CAS  Google Scholar 

  30. Aldskogius H, Kozlova EN (1998) Central neuron–glial and glial–glial interactions following axon injury. Prog Neurobiol 55:1–26

    Article  PubMed  CAS  Google Scholar 

  31. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  32. Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10:1377–1386

    Article  PubMed  CAS  Google Scholar 

  33. Singh S, Dikshit M (2007) Apoptotic neuronal death in Parkinson’s disease: involvement of nitric oxide. Brain Res Rev 54(2):233–250

    Article  PubMed  CAS  Google Scholar 

  34. Radad K, Gille G, Rausch WD (2008) Dopaminergic neurons are preferentially sensitive to long term rotenone toxicity in primary culture. Toxicol in Vitro 22:68–74

    Article  PubMed  CAS  Google Scholar 

  35. Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL (2007) The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 146:741–755

    Article  PubMed  CAS  Google Scholar 

  36. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    PubMed  CAS  Google Scholar 

  37. Shimohama S, Tanino H, Fujimoto S (2001) Differential expression of rat brain caspase family proteins during development and aging. Biochem Biophys Res Commun 289:1063–1066

    Article  PubMed  CAS  Google Scholar 

  38. Sharma R, McMillan CR, Tenn CC, Niles LP (2006) Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson’s disease. Brain Res 1068:230–236

    Article  PubMed  CAS  Google Scholar 

  39. Capitelli C, Sereniki A, Lima MM, Reksidler AB, Tufik S, Vital MA (2008) Melatonin attenuates tyrosine hydroxylase loss and hypolocomotion in MPTP-lesioned rats. Eur J Pharmacol 594:101–108

    Article  PubMed  CAS  Google Scholar 

  40. Joo WS, Jin BK, Park CW, Maeng SH, Kim YS (1998) Melatonin increases striatal dopaminergic function in 6-OHDA-lesioned rats. NeuroReport 9:4123–4126

    Article  PubMed  CAS  Google Scholar 

  41. Tan DX, Manchester LC, Reiter RJ, Cabrera J, Burkhardt S, Phillip T, Gitto E, Karbownik M, Li QD (2000) Melatonin suppresses autoxidation and hydrogen peroxide-induced lipid peroxidation in monkey brain homogenate. Neuro Endocrinol Lett 21:361–365

    PubMed  CAS  Google Scholar 

  42. Ortega-Gutiérrez S, Fuentes-Broto L, García JJ, López-Vicente M, Martínez-Ballarín E, Miana-Mena FJ, Millán-Plano S, Reiter RJ (2007) Melatonin reduces protein and lipid oxidative damage induced by homocysteine in rat brain homogenates. J Cell Biochem 102:729–735

    Article  PubMed  Google Scholar 

  43. Chen LJ, Gao YQ, Li XJ, Shen DH, Sun FY (2005) Melatonin protects against MPTP/MPP+-induced mitochondrial DNA oxidative damage in vivo and in vitro. J Pineal Res 39:34–42

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. A. K. Balapure, Head, Tissue and Cell Culture Unit, CSIR-CDRI and his team for providing cells for experimentation and to Mr. Pradeep Kamat and Miss Aameena Siddiqui for their assistance. Supriya Swarnkar gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandishwar Nath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swarnkar, S., Singh, S., Goswami, P. et al. Astrocyte Activation: A Key Step in Rotenone Induced Cytotoxicity and DNA Damage. Neurochem Res 37, 2178–2189 (2012). https://doi.org/10.1007/s11064-012-0841-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0841-y

Keywords

Navigation