Skip to main content

Advertisement

Log in

Neurotoxicant-induced animal models of Parkinson’s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The etiologic basis of Parkinson’s disease (PD), the second most common age-related neurodegenerative disorder, is unknown. Recent epidemiological and experimental studies indicate that exposure to environmental agents, including a number of agricultural chemicals, may contribute to the pathogenesis of this disorder. Animal models are important tools in experimental medical science for studying the pathogenesis and therapeutic intervention strategies of human diseases. Since many human disorders do not arise spontaneously in animals, characteristic functional changes have to be mimicked by neurotoxic agents. Recently, agricultural chemicals, when administrated systemically, have been shown to reproduce specific features of PD in rodents, thus opening new routes for the development of animal models for this disorder. In addition to a brief historical overview of the toxin-induced PD models, this study provides a detailed description of exiting models in which Parkinsonism is initiated via the exposure of animals to such agricultural chemicals as rotenone, paraquat, and maneb. Suggested neurotoxicity mechanisms of these chemicals are considered, and the major lessons learned from the analysis of pesticide-induced PD models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–C
Fig. 3

Similar content being viewed by others

References

  • Ahmadi FA, Linseman DA, Grammatopoulos TN, Jones SM, Bouchard RJ, Freed CR, Heidenreich KA, Zawada WM (2003) The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons. J Neurochem 87:914–921

    Article  CAS  PubMed  Google Scholar 

  • Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136:317–324

    Article  CAS  PubMed  Google Scholar 

  • Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B (1997a) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 69:1326–1329

    CAS  PubMed  Google Scholar 

  • Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997b) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196–1203

    CAS  PubMed  Google Scholar 

  • Altschuler E (1999) Aluminum-containing antacids as a cause of idiopathic Parkinson’s disease. Med Hypotheses 53:22–23

    Article  CAS  PubMed  Google Scholar 

  • Armstrong JS, Hornung B, Lecane P, Jones DP, Knox SJ (2001) Rotenone-induced G2/M cell cycle arrest and apoptosis in a human B lymphoma cell line PW. Biochem Biophys Res Commun 289:973–978

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, Zhang SMM, Hernan MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    Article  CAS  PubMed  Google Scholar 

  • Aschner M (2000) Manganese: brain transport and emerging research needs. Environ Health Perspect 108 (Suppl 3):429–432

    CAS  PubMed  Google Scholar 

  • Beal MF (2003) Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:120–131

    CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, Greenamyre JT (2002) Animal models of Parkinson’s disease. Bioessays 24:308–318

    Article  CAS  PubMed  Google Scholar 

  • Bismuth C, Garnier R, Baud FJ, Muszynski J, Keyes C (1990) Paraquat poisoning. An overview of the current status. Drug Saf 5:243–251

    CAS  PubMed  Google Scholar 

  • Bloem BR, Irwin I, Buruma OJ, Haan J, Roos RA, Tetrud JW, Langston JW (1990) The MPTP model: versatile contributions to the treatment of idiopathic Parkinson’s disease. J Neurol Sci 97:273–293

    Article  CAS  PubMed  Google Scholar 

  • Bonifati V, Rizzu P, Baren MJ van, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, Dongen JW van, Vanacore N, Swieten JC van, Brice A, Meco G, Duijn CM van, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  CAS  PubMed  Google Scholar 

  • Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823:1–10

    Article  CAS  PubMed  Google Scholar 

  • Burke RE (1999) Alpha-synuclein and Parkinson’s disease. Brain Res Bull 50:465–466

    Article  CAS  PubMed  Google Scholar 

  • Calne DB, Langston JW (1983) Aetiology of Parkinson’s disease. Lancet II:1457–1459

    Article  Google Scholar 

  • Carpenter DO (2001) Effects of metals on the nervous system of humans and animals. Int J Occup Med Environ Health 14:209–218

    CAS  PubMed  Google Scholar 

  • Chauvin C, De Oliveira F, Ronot X, Mousseau M, Leverve X, Fontaine E (2001) Rotenone inhibits the mitochondrial permeability transition-induced cell death in U937 and KB cells. J Biol Chem 276:41394–41398

    Article  CAS  PubMed  Google Scholar 

  • Corasaniti MT, Strongoli MC, Rotiroti D, Bagetta G, Nistico G (1998) Paraquat: a useful tool for the in vivo study of mechanisms of neuronal cell death. Pharmacol Toxicol 83:1–7

    CAS  Google Scholar 

  • Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249–254

    Article  CAS  PubMed  Google Scholar 

  • Davis LE, Adair JC (1999) Parkinsonism from methanol poisoning: benefit from treatment with anti-Parkinson drugs. Mov Disord 14:520–522

    Article  CAS  PubMed  Google Scholar 

  • Dev KK, Hofele K, Barbieri S, Buchman VL, Putten H van der (2003) Part II: alpha-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology 45:14–44

    Article  CAS  PubMed  Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    CAS  PubMed  Google Scholar 

  • Dickson DW (2001) Alpha-synuclein and the Lewy body disorders. Curr Opin Neurol 14:423–432

    Article  CAS  PubMed  Google Scholar 

  • Di Monte DA (2001) The role of environmental agents in Parkinson’s disease. Clin Neurosci Res 1:419–426

    Article  CAS  Google Scholar 

  • Di Monte DA (2003) The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol 2:531–538

    Article  CAS  PubMed  Google Scholar 

  • Di Monte D, Sandy MS, Ekstrom G, Smith MT (1986) Comparative-studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (Mpp+) cytotoxicity. Biochem Biophys Res Commun 137:303–309

    CAS  PubMed  Google Scholar 

  • Di Monte DA, Lavasani M, Manning-Bog AB (2002) Environmental factors in Parkinson’s disease. Neurotoxicology 23:487–502

    Article  CAS  PubMed  Google Scholar 

  • Duan W, Rangnekar VM, Mattson MP (1999a) Prostate apoptosis response-4 production in synaptic compartments following apoptotic and excitotoxic insults: evidence for a pivotal role in mitochondrial dysfunction and neuronal degeneration. J Neurochem 72:2312–2322

    Article  CAS  PubMed  Google Scholar 

  • Duan W, Zhang Z, Gash DM, Mattson MP (1999b) Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson’s disease. Ann Neurol 46:587–597

    Article  CAS  PubMed  Google Scholar 

  • Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VM, Trojanowski JQ (2000) Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 157:1439–1445

    CAS  PubMed  Google Scholar 

  • Fall PA, Fredrikson M, Axelson O, Granerus AK (1999) Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case-control study in southeastern Sweden. Mov Disord 14:28–37

    Article  CAS  PubMed  Google Scholar 

  • Faull RL, Laverty R (1969) Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp Neurol 23:332–340

    Article  CAS  PubMed  Google Scholar 

  • Ferraz HB, Bertolucci PH, Pereira JS, Lima JG, Andrade LA (1988) Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication. Neurology 38:550–553

    CAS  PubMed  Google Scholar 

  • Floor E, Wetzel MG (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70:268–275

    CAS  PubMed  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  CAS  PubMed  Google Scholar 

  • Fontaine E, Eriksson O, Ichas F, Bernardi P (1998) Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation by electron flow through the respiratory chain complex I. J Biol Chem 273:12662–12668

    Article  CAS  PubMed  Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    CAS  PubMed  Google Scholar 

  • Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA (1986) Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 20:449–455

    CAS  PubMed  Google Scholar 

  • Gao HM, Hong JS, Zhang W, Liu B (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22:782–790

    CAS  PubMed  Google Scholar 

  • Gao HM, Hong JS, Zhang W, Liu B (2003a) Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. J Neurosci 23:1228–1236

    CAS  PubMed  Google Scholar 

  • Gao HM, Liu B, Hong JS (2003b) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23:6181–6187

    CAS  PubMed  Google Scholar 

  • Gasser T (1998) Genetics of Parkinson’s disease. Ann Neurol 44:53–57

    Google Scholar 

  • Gasser T (2001) Genetics of Parkinson’s disease. J Neurol 248:833–840

    Article  CAS  PubMed  Google Scholar 

  • Gerber GB, Leonard A, Hantson P (2002) Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Crit Rev Oncol Hematol 42:25–34

    Article  CAS  PubMed  Google Scholar 

  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989

    Article  CAS  PubMed  Google Scholar 

  • Goedert M (2001a) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501

    Article  CAS  PubMed  Google Scholar 

  • Goedert M (2001b) Parkinson’s disease and other alpha-synucleinopathies. Clin Chem Lab Med 39:308–312

    CAS  PubMed  Google Scholar 

  • Good PF, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593:343–346

    Article  CAS  PubMed  Google Scholar 

  • Good PF, Hsu A, Werner P, Perl DP, Olanow CW (1998) Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 57:338–342

    CAS  PubMed  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50:1346–1350

    CAS  PubMed  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20:239–247

    CAS  PubMed  Google Scholar 

  • Greenamyre JT, Sherer TB, Betarbet R, Panov AV (2001) Complex I and Parkinson’s disease. IUBMB Life 52:135–141

    Article  CAS  PubMed  Google Scholar 

  • Guenebaut V, Vincentelli R, Mills D, Weiss H, Leonard KR (1997) Three-dimensional structure of NADH-dehydrogenase from Neurospora crassa by electron microscopy and conical tilt reconstruction. J Mol Biol 265:409–418

    Article  CAS  PubMed  Google Scholar 

  • Hageman G, Hoek JAF van der, Hout M van, Laan G van der, Steur EJ, Bruin W de, Herholz K (1999) Parkinsonism, pyramidal signs, polyneuropathy, and cognitive decline after long-term occupational solvent exposure. J Neurol 246:198–206

    Article  CAS  PubMed  Google Scholar 

  • Hara S, Endo T, Kuriiwa F, Kano S (1991a) Different effects of paraquat on microsomal lipid peroxidation in mouse brain, lung and liver. Pharmacol Toxicol 68:260–265

    CAS  PubMed  Google Scholar 

  • Hara S, Endo T, Kuriiwa F, Kano S (1991b) Effects of MPTP, MPP+, and paraquat on NADPH-dependent lipid peroxidation in mouse brain and lung microsomes. Biochem Med Metab Biol 45:292–297

    Article  CAS  PubMed  Google Scholar 

  • Hara S, Endo T, Kuriiwa F, Kano S (1991c) Interaction between dual NADPH-dependent reactions of paraquat in mouse brain microsomes. Res Commun Chem Pathol Pharmacol 73:119–122

    CAS  PubMed  Google Scholar 

  • Hara S, Endo T, Kuriiwa F, Kano S (1991d) Mechanism of paraquat-stimulated lipid peroxidation in mouse brain and pulmonary microsomes. J Pharm Pharmacol 43:731–733

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, Masliah E (1999) Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10:717–721

    CAS  PubMed  Google Scholar 

  • Hastings TG, Lewis DA, Zigmond MJ (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA 93:1956–1961

    Article  CAS  PubMed  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    Article  CAS  PubMed  Google Scholar 

  • Hellenbrand W, Boeing H, Robra BP, Seidler A, Vieregge P, Nischan P, Joerg J, Oertel WH, Schneider E, Ulm G (1996) Diet and Parkinson’s disease. II. A possible role for the past intake of specific nutrients. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology 47:644–650

    CAS  PubMed  Google Scholar 

  • Hensley K, Pye QN, Maidt ML, Stewart CA, Robinson KA, Jaffrey F, Floyd RA (1998) Interaction of alpha-phenyl-N-tert-butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site. J Neurochem 71:2549–2557

    CAS  PubMed  Google Scholar 

  • Hertzman C, Wiens M, Snow B, Kelly S, Calne D (1994) A case-control study of Parkinson’s disease in a horticultural region of British Columbia. Mov Disord 9:69–75

    CAS  PubMed  Google Scholar 

  • Higgins DS Jr, Greenamyre JT (1996) [3H]Dihydrorotenone binding to NADH: ubiquinone reductase (complex I) of the electron transport chain: an autoradiographic study. J Neurosci 16:3807–3816

    CAS  PubMed  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56:446–451

    CAS  PubMed  Google Scholar 

  • Hoglinger GU, Feger J, Prigent A, Michel PP, Parain K, Champy P, Ruberg M, Oertel WH, Hirsch EC (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502

    Article  CAS  PubMed  Google Scholar 

  • Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Klaunig JE (2000) Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicol Sci 53:340–351

    Article  CAS  PubMed  Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13 (Suppl 1):24–34

    Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53 (Suppl 3):S26–S36

    Article  CAS  PubMed  Google Scholar 

  • Jones GM, Vale JA (2000) Mechanisms of toxicity, clinical features, and management of diquat poisoning: a review. J Toxicol Clin Toxicol 38:123–128

    Article  CAS  PubMed  Google Scholar 

  • Jonsson G, Sachs C (1975) Actions of 6-hydroxydopamine quinones on catecholamine neurons. J Neurochem 25:509–516

    CAS  PubMed  Google Scholar 

  • Kiechle FL, Zhang X (2002) Apoptosis: biochemical aspects and clinical implications. Clin Chim Acta 326:27–45

    Article  CAS  PubMed  Google Scholar 

  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316

    CAS  PubMed  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Shimohama S, Akaike A, Taniguchi T (2000) The parkinsonian models: invertebrates to mammals. Jpn J Pharmacol 84:237–243

    Article  CAS  PubMed  Google Scholar 

  • Klawans HL, Stein RW, Tanner CM, Goetz CG (1982) A pure parkinsonian syndrome following acute carbon monoxide intoxication. Arch Neurol 39:302–304

    CAS  PubMed  Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    CAS  PubMed  Google Scholar 

  • Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+oxidation-reduction state. Biochem J 368:545–553

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM (1998) Parkinson’s disease—first of two parts. N Engl J Med 339:1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Langston JW (1996) The etiology of Parkinson’s disease with emphasis on the MPTP story. Neurology 47:S153–S160

    CAS  PubMed  Google Scholar 

  • Langston JW, Ballard PA (1983) Parkinsons-disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med 309:310

    CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    Article  CAS  PubMed  Google Scholar 

  • Lapointe N, St Hilaire M, Martinoli MG, Blanchet J, Gould P, Rouillard C, Cicchetti F (2004) Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J 18:117–119

    Google Scholar 

  • Levy BS, Nassetta WJ (2003) Neurologic effects of manganese in humans: a review. Int J Occup Environ Health 9:153–163

    CAS  PubMed  Google Scholar 

  • Lewy FH (1912) Paralysis agitans. Pathologische Anatomie. In: Lewandowski M (ed) Handbuch der Neurologie. Springer, Berlin Heidelberg New York, pp 920–933

  • Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC (1997) Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology 48:1583–1588

    CAS  PubMed  Google Scholar 

  • Lyras L, Perry RH, Perry EK, Ince PG, Jenner A, Jenner P, Halliwell B (1998) Oxidative damage to proteins, lipids, and DNA in cortical brain regions from patients with dementia with Lewy bodies. J Neurochem 71:302–312

    CAS  PubMed  Google Scholar 

  • Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice—paraquat and alpha-synuclein. J Biol Chem 277:1641–1644

    Article  CAS  PubMed  Google Scholar 

  • Marder K, Logroscino G, Alfaro B, Mejia H, Halim A, Louis E, Cote L, Mayeux R (1998) Environmental risk factors for Parkinson’s disease in an urban multiethnic community. Neurology 50:279–281

    CAS  PubMed  Google Scholar 

  • Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K (2003) The role of alpha-synuclein in Parkinson’s disease: insights from animal models. Nat Rev Neurosci 4:727–738

    Article  CAS  PubMed  Google Scholar 

  • Martyn C, Gale C (2003) Tobacco, coffee, and Parkinson’s disease—caffeine and nicotine may improve the health of dopaminergic systems. BMJ 326:561–562

    Article  PubMed  Google Scholar 

  • Mattson MP, Duan W (1999) “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 58:152–166

    Article  CAS  PubMed  Google Scholar 

  • McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10:119–127

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    CAS  PubMed  Google Scholar 

  • McGrew DM, Irwin I, Langston JW (2000) Ethylenebisdithiocarbamate enhances MPTP-induced striatal dopamine depletion in mice. Neurotoxicology 21:309–312

    CAS  PubMed  Google Scholar 

  • Meco G, Bonifati V, Vanacore N, Fabrizio E (1994) Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bis-dithiocarbamate). Scand J Work Environ Health 20:301–305

    CAS  PubMed  Google Scholar 

  • Menegon A, Board PG, Blackburn AC, Mellick GD, Le Couteur DG (1998) Parkinson’s disease, pesticides, and glutathione transferase polymorphisms. Lancet 352:1344–1346

    Article  CAS  PubMed  Google Scholar 

  • Morano A, Jimenez-Jimenez FJ, Molina JA, Antolin MA (1994) Risk-factors for Parkinson’s disease: case-control study in the province of Caceres, Spain. Acta Neurol Scand 89:164–170

    CAS  PubMed  Google Scholar 

  • Morato GS, Lemos T, Takahashi RN (1989) Acute exposure to maneb alters some behavioral functions in the mouse. Neurotoxicol Teratol 11:421–425

    Article  CAS  PubMed  Google Scholar 

  • Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508

    Article  CAS  PubMed  Google Scholar 

  • Nicolaou K, Pfefferkorn J, Schuler F, Roecker A, Cao G, Casida J (2000) Combinatorial synthesis of novel and potent inhibitors of NADH:ubiquinone oxidoreductase. Chem Biol 7:979–992

    Article  CAS  PubMed  Google Scholar 

  • Orth M, Tabrizi SJ (2003) Models of Parkinson’s disease. Mov Disord 18:729–737

    Article  PubMed  Google Scholar 

  • Paganini-Hill A (2001) Risk factors for Parkinson’s disease: the Leisure World cohort study. Neuroepidemiology 20:118–124

    Article  CAS  PubMed  Google Scholar 

  • Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104:661–677

    CAS  PubMed  Google Scholar 

  • Perier C, Bove J, Vila M, Przedborski S (2003) The rotenone model of Parkinson’s disease. Trends Neurosci 26:345–346

    Article  CAS  PubMed  Google Scholar 

  • Perry TL, Yong VW, Wall RA, Jones K (1986) Paraquat and two endogenous analogues of the neurotoxic substance N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine do not damage dopaminergic nigrostriatal neurons in the mouse. Neurosci Lett 69:285–289

    Article  CAS  PubMed  Google Scholar 

  • Pezzoli G, Strada O, Silani V, Zecchinelli A, Perbellini L, Javoy-Agid F, Ghidoni P, Motti ED, Masini T, Scarlato G, Agid Y, Hirsch EC (1996) Clinical and pathological features in hydrocarbon-induced parkinsonism. Ann Neurol 40:922–925

    CAS  PubMed  Google Scholar 

  • Piccini P, Burn DJ, Ceravolo R, Maraganore D, Brooks DJ (1999) The role of inheritance in sporadic Parkinson’s disease: evidence from a longitudinal study of dopaminergic function in twins. Ann Neurol 45:577–582

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  • Ragonese P, Salemi G, Morgante L, Aridon P, Epifanio A, Buffa D, Scoppa F, Savettieri G (2003) A case-control study on cigarette, alcohol, and coffee consumption preceding Parkinson’s disease. Neuroepidemiology 22:297–304

    Article  CAS  PubMed  Google Scholar 

  • Raivich G, Jones LL, Werner A, Bluthmann H, Doetschmann T, Kreutzberg GW (1999) Molecular signals for glial activation: pro- and anti-inflammatory cytokines in the injured brain. Acta Neurochir Suppl (Wien) 73:21–30

    Google Scholar 

  • Robinson BH (1998) Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim Biophys Acta 1364:271–286

    Article  CAS  PubMed  Google Scholar 

  • Ross GW, Petrovitch H (2001) Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson’s disease. Drugs Aging 18:797–806

    CAS  PubMed  Google Scholar 

  • Ross GW, Abbott RD, Petrovitch H, Morens DM, Grandinetti A, Tung KH, Tanner CM, Masaki KH, Blanchette PL, Curb JD, Popper JS, White LR (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. J Am Med Assoc 283:2674–2679

    Article  CAS  Google Scholar 

  • Sachs C, Jonsson G (1975) Mechanisms of action of 6-hydroxydopamine. Biochem Pharmacol 24:1–8

    Article  CAS  PubMed  Google Scholar 

  • Sakka N, Sawada H, Izumi Y, Kume T, Katsuki H, Kaneko S, Shimohama S, Akaike A (2003) Dopamine is involved in selectivity of dopaminergic neuronal death by rotenone. Neuroreport 14:2425–2428

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (1994) Mitochondrial function and neurotoxicity. Curr Opin Neurol 7:531–534

    CAS  PubMed  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    CAS  PubMed  Google Scholar 

  • Schuler F, Casida JE (2001) Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling. Biochim Biophys Acta 1506:79–87

    Article  CAS  PubMed  Google Scholar 

  • Schwarzschild MA, Chen JF, Tennis M, Messing S, Kamp C, Ascherio A, Holloway RG, Marek K, Tanner CM, McDermott M, Lang AE (2003) Relating caffeine consumption to Parkinson’s disease progression and dyskinesias development. Mov Disord 18:1082–1083

    Article  Google Scholar 

  • Seidler A, Hellenbrand W, Robra BP, Vieregge P, Nischan P, Joerg J, Oertel WH, Ulm G, Schneider E (1996) Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology 46:1275–1284

    CAS  PubMed  Google Scholar 

  • Semchuk KM, Love EJ, Lee RG (1992) Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 42:1328–1335

    CAS  PubMed  Google Scholar 

  • Semchuk KM, Love EJ, Lee RG (1993) Parkinson’s disease: a test of the multifactorial etiologic hypothesis. Neurology 43:1173–1180

    CAS  PubMed  Google Scholar 

  • Sherer TB, Betarbet R, Kim JH, Greenamyre JT (2003a) Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci Lett 341:87–90

    Article  CAS  PubMed  Google Scholar 

  • Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003b) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    CAS  PubMed  Google Scholar 

  • Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003c) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9–16

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O, Shiono H (2003a) Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res 976:243–252

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Matsubara K, Ohtaki K, Shiono H (2003b) Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture. Neurosci Res 46:523–532

    Article  CAS  PubMed  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  CAS  PubMed  Google Scholar 

  • Sjoerdsma A, Engelman K, Spector S, Udenfriend S (1965) Inhibition of catecholamine synthesis in man with alpha-methyl-tyrosine, an inhibitor of tyrosine hydroxylase. Lancet II:1092–1094

    Article  Google Scholar 

  • Soleo L, Defazio G, Scarselli R, Zefferino R, Livrea P, Foa V (1996) Toxicity of fungicides containing ethylene-bis-dithiocarbamate in serumless dissociated mesencephalic-striatal primary coculture. Arch Toxicol 70:678–682

    Article  CAS  PubMed  Google Scholar 

  • Spector S, Sjoerdsma A, Udenfriend S (1965) Blokade of endogenous norepinephrine synthesis by alpha-methyl-tyrosine, an inhibitor of tyrosine hydrolase. J Pharmacol Exp Ther 147:86–95

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

    Article  CAS  PubMed  Google Scholar 

  • Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665

    Article  CAS  PubMed  Google Scholar 

  • Sveinbjornsdottir S, Hicks AA, Jonsson T, Petursson H, Gugmundsson G, Frigge ML, Kong A, Gulcher JR, Stefansson K (2000) Familial aggregation of Parkinson’s disease in Iceland. N Engl J Med 343:1765–1770

    Article  CAS  PubMed  Google Scholar 

  • Tada-Oikawa S, Hiraku Y, Kawanishi M, Kawanishi S (2003) Mechanism for generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenone-induced apoptosis. Life Sci 73:3277–3288

    Article  CAS  PubMed  Google Scholar 

  • Takahashi RN, Rogerio R, Zanin M (1989) Maneb enhances MPTP neurotoxicity in mice. Res Commun Chem Pathol Pharmacol 66:167–170

    CAS  PubMed  Google Scholar 

  • Takeda A (2003) Manganese action in brain function. Brain Res Brain Res Rev 41:79–87

    Article  CAS  PubMed  Google Scholar 

  • Talpade DJ, Greene JG, Higgins DS Jr, Greenamyre JT (2000) In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem 75:2611–2621

    Article  CAS  PubMed  Google Scholar 

  • Tan EK, Tan C, Fook-Chong SMC, Lum SY, Chai A, Chung H, Shen H, Zhao Y, Teoh ML, Yih Y, Pavanni R, Chandran VR, Wong MC (2003) Dose-dependent protective effect of coffee, tea, and smoking in Parkinson’s disease: a study in ethnic Chinese. J Neurol Sci 216:163–167

    Article  PubMed  Google Scholar 

  • Tanner CM (1989) The role of environmental toxins in the etiology of Parkinson’s disease. Trends Neurosci 12:49–54

    Article  CAS  PubMed  Google Scholar 

  • Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, Langston JW (1999) Parkinson disease in twins: an etiologic study. J Am Med Assoc 281:341–346

    Article  CAS  Google Scholar 

  • Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA (2000a) Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson’s disease? Brain Res 873:225–234

    Article  CAS  PubMed  Google Scholar 

  • Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA (2000b) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci 20:9207–9214

    CAS  PubMed  Google Scholar 

  • Thiruchelvam M, Richfield EK, Goodman BM, Baggs RB, Cory-Slechta DA (2002) Developmental exposure to the pesticides paraquat and maneb and the Parkinson’s disease phenotype. Neurotoxicology 23:621–633

    Article  CAS  PubMed  Google Scholar 

  • Thiruchelvam M, McCormack A, Richfield EK, Baggs RB, Tank AW, Di Monte DA, Cory-Slechta DA (2003) Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson’s disease phenotype. Eur J Neurosci 18:589–600

    Article  PubMed  Google Scholar 

  • Tieu K, Ischiropoulos H, Przedborski S (2003) Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life 55:329–335

    Article  CAS  PubMed  Google Scholar 

  • Trojanowski JQ (2003) Rotenone neurotoxicity: a new window on environmental causes of Parkinson’s disease and related brain amyloidoses. Exp Neurol 179:6–8

    Article  PubMed  Google Scholar 

  • Trojanowski JQ, Lee VM (2002) Parkinson’s disease and related synucleinopathies are a new class of nervous system amyloidoses. Neurotoxicology 23:457–460

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    CAS  PubMed  Google Scholar 

  • Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414

    Article  CAS  PubMed  Google Scholar 

  • Uitti RJ, Snow BJ, Shinotoh H, Vingerhoets FJG, Hayward M, Hashimoto S, Richmond J, Markey SP, Markey CJ, Calne DB (1994) Parkinsonism induced by solvent abuse. Ann Neurol 35:616–619

    CAS  PubMed  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2003) A protein-chameleon: conformational plasticity of α-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21:211–234

    CAS  PubMed  Google Scholar 

  • Uversky VN, Fink AL (2002) Biophysical properties of human α-synuclein and its role in Parkinson’s disease. In: Pandalai SG (ed) Recent research developments in proteins. Transworld Research Network, Kerala, India, pp 153–186

  • Uversky VN, Li J, Fink AL (2001) Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett 500:105–108

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Bower K, Fink AL (2002) Synergistic effects of pesticides and metals on the fibrillation of α-synuclein: implications for Parkinson’s disease. Neurotoxicology 23:527–536

    Article  CAS  PubMed  Google Scholar 

  • Vanacore N, Nappo A, Gentile M, Brustolin A, Palange S, Liberati A, Di Rezze S, Caldora G, Gasparini M, Benedetti F, Bonifati V, Forastiere F, Quercia A, Meco G (2002) Evaluation of risk of Parkinson’s disease in a cohort of licensed pesticide users. Neurol Sci 23 (Suppl 2):S119–S120

    Article  PubMed  Google Scholar 

  • Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S (2000) Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 74:721–729

    Article  CAS  PubMed  Google Scholar 

  • Weiss H, Friedrich T, Hofhaus G, Preis D (1991) The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem 197:563–576

    CAS  PubMed  Google Scholar 

  • Wooten GF (1997) Neurochemistry and neuropharmacology of Parkinson’s disease. In: Watts RL (ed) Movement disorders: neurologic principles and practice. McGraw-Hill, New York, pp 153–160

  • Yasui M, Kihira T, Ota K (1992) Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology 13:593–600

    CAS  PubMed  Google Scholar 

  • Yumino K, Kawakami I, Tamura M, Hayashi T, Nakamura M (2002) Paraquat- and diquat-induced oxygen radical generation and lipid peroxidation in rat brain microsomes. J Biochem (Tokyo) 131:565–570

    CAS  Google Scholar 

  • Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez TE, Ser T del, Munoz DG, Yebenes JG de (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Fitsanakis VA, Gu G, Jing D, Ao M, Amarnath V, Montine TJ (2003) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84:336–346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author expresses his deepest gratitude to Alexey Uversky for carefully reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Uversky.

Additional information

This work was supported in part by a grant from INTAS (2001–2347)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uversky, V.N. Neurotoxicant-induced animal models of Parkinson’s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res 318, 225–241 (2004). https://doi.org/10.1007/s00441-004-0937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0937-z

Keywords

Navigation