Skip to main content
Log in

Improvement of Soybean; A Way Forward Transition from Genetic Engineering to New Plant Breeding Technologies

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Soybean is considered one of the important crops among legumes. Due to high nutritional contents in seed (proteins, sugars, oil, fatty acids, and amino acids), soybean is used globally for food, feed, and fuel. The primary consumption of soybean is vegetable oil and feed for chickens and livestock. Apart from this, soybean benefits soil fertility by fixing atmospheric nitrogen through root nodular bacteria. While conventional breeding is practiced for soybean improvement, with the advent of new biotechnological methods scientists have also engineered soybean to improve different traits (herbicide, insect, and disease resistance) to fulfill consumer requirements and to meet the global food deficiency. Genetic engineering (GE) techniques such as transgenesis and gene silencing help to minimize the risks and increase the adaptability of soybean. Recently, new plant breeding technologies (NPBTs) emerged such as zinc-finger nucleases, transcription activator‐like effector nucleases, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), which paved the way for enhanced genetic modification of soybean. These NPBTs have the potential to improve soybean via gene functional characterization precision genome engineering for trait improvement. Importantly, these NPBTs address the ethical and public acceptance issues related to genetic modifications and transgenesis in soybean. In the present review, we summarized the improvement of soybean through GE and NPBTs. The valuable traits that have been improved through GE for different constraints have been discussed. Moreover, the traits that have been improved through NPBTs and potential targets for soybean improvements via NPBTs and solutions for ethical and public acceptance are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source organism; (3) amplified gene/DNA fragment from source genomic DNA also known as gene of interest for different trait(s) improvement; (4) Agrobacterium tumefaciens; (5) tumor inducing (Ti) plasmid with T-DNA isolated from A. tumefaciens; (6) Disarmed Plasmid; (7) recombinant DNA with transgene showed in red color; (8a) Agrobacterium transformed by electroporation method; (8b) loading of recombinant DNA onto gold particles; (9a) transformed Agrobacterium culture ready for soybean infection; (9b) biolistic/Gene gun transformation of recombinant plasmid; (10) regeneration of putative transgenic soybean on selection media, and (11) acclimatization of transgenic soybean with desired trait(s)

Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baianu, I., You, T., Costescu, D., Lozano, P., Prisecaru, V., & Nelson, R. (2012). Determination of soybean oil, protein and amino acid residues in soybean seeds by high resolution nuclear magnetic resonance (NMRS) and near infrared (NIRS). Nature Precedings, 7, 1–1.

    Google Scholar 

  2. Kanchana, P., Santha, M. L., & Raja, K. D. (2015). A review on Glycine max (L.) Merr. (soybean). World Journal of Pharmacy and Pharmaceutical Sciences, 5(1), 356–371.

    Google Scholar 

  3. Nandakishor, H., Kumar, P., & Mane, S. (2017). Transmission studies of soybean mosaic virus. International Journal of Current Microbiology and Applied Science., 6(4), 867–869.

    Article  Google Scholar 

  4. Cahoon, E. B. (2003). Genetic enhancement of soybean oil for industrial uses: Prospects and challenges. AgBioforum, 6(1), 11–13.

    Google Scholar 

  5. Messina, M. (1995). Modern applications for an ancient bean: soybeans and the prevention and treatment of chronic disease. The Journal of Nutrition, 125(3), 567S-569S.

    CAS  Google Scholar 

  6. Youseif, S. H., El-Megeed, F. H. A., Ageez, A., Mohamed, Z. K., Shamseldin, A., & Saleh, S. A. (2014). Phenotypic characteristics and genetic diversity of rhizobia nodulating soybean in Egyptian soils. European Journal of Soil Biology, 60, 34–43.

    Article  CAS  Google Scholar 

  7. Ogoke, I., Carsky, R., Togun, A., & Dashiell, K. (2003). Maturity class and P effects on soya bean grain yield in the moist savanna of West Africa. Journal of Agronomy and Crop Science, 189(6), 422–427.

    Article  Google Scholar 

  8. Slavin, J. (1991). Nutritional benefits of soy protein and soy fiber. Journal of the American Dietetic Association., 91(7), 816–819.

    Article  CAS  Google Scholar 

  9. Yaklich, R., Vinyard, B., Camp, M., & Douglass, S. (2002). Analysis of seed protein and oil from soybean northern and southern region uniform tests. Crop Science, 42(5), 1504–1515.

    Article  Google Scholar 

  10. Wilson, I., & DP, M., & HE, S. (1978). Isolation and characterization of starch from mature soybeans. Cereal Chemistry, 55(5), 661–670.

    Google Scholar 

  11. Weaver, C. M., & Plawecki, K. L. (1994). Dietary calcium: Adequacy of a vegetarian diet. The American Journal of Clinical Nutrition., 59(5), 1238S-1241S.

    Article  CAS  Google Scholar 

  12. Tepavčević, V., Cvejić, J., Poša, M., & Popović, J. (2011). Isoflavone content and composition in soybean. Soybeanbiochemistry, chemistry, and physiology. Croatia: InTech. (pp. 281–294)

  13. Lee, S. J., Ahn, J. K., Khanh, T. D., Chun, S. C., Kim, S. L., Ro, H. M., et al. (2007). Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill.) sprouts grown under two different light conditions. Journal of Agricultural and Food Chemistry, 55(23), 9415–9421.

    Article  CAS  Google Scholar 

  14. Messina, M. J., & Loprinzi, C. L. (2001). Soy for breast cancer survivors: A critical review of the literature. The Journal of Nutrition, 131(11), 3095S-3108S.

    Article  CAS  Google Scholar 

  15. Carrao-Panizzi, M. C., & Erhan, S. Z. (2007). Environmental and genetic variation of soybean tocopherol content under Brazilian growing conditions. Journal of the American Oil Chemists Society, 84(10), 921–928.

    Article  CAS  Google Scholar 

  16. Luckmann, W. (1971). The insect pests of soybean. World Farm, 13(5), 18–19.

    Google Scholar 

  17. Gaur, N., & Mogalapu, S. (2018). Pests of Soybean. Pests and Their Management (pp. 137–162). Springer.

  18. Ghosh, L. K. (2008). Handbook on Hemipteran pests in India. Zoological Survey of India.

  19. Mohammad, A. (1981). The groundnut leafminer, Aproaerema modicella Deventer (= Stomopteryx subsecivella Zeller)(Lepidoptera: Gelechiidae). A Review of World Literature., 14, 33.

    Google Scholar 

  20. Panizzi, A. R., McPherson, J., James, D. G., Javahery, M., & McPherson, R. M. (2000). Stink bugs (Pentatomidae). Heteroptera of Economic Importance, 828.

  21. Perring, T. M. (2001). The Bemisia tabaci species complex. Crop Protection, 20(9), 725–737.

    Article  Google Scholar 

  22. Singh, S., Ballal, C., & Poorani, J. (2002). Old world bollworm Helicoverpa armigera, associated Heliothinae and their natural enemies. Bangalore, India, Project Directorate of Biological Control, Technical Bulletin. 31.

  23. Hodgson, E. (2010). Metabolism of pesticides. Hayes' Handbook of Pesticide Toxicology (pp. 893–921). Elsevier.

  24. Bass, C., Denholm, I., Williamson, M. S., & Nauen, R. (2015). The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology., 121, 78–87.

    Article  CAS  Google Scholar 

  25. Hanson, A. A., Menger-Anderson, J., Silverstein, C., Potter, B. D., MacRae, I. V., Hodgson, E. W., & Koch, R. L. (2017). Evidence for soybean aphid (Hemiptera: Aphididae) resistance to pyrethroid insecticides in the upper midwestern United States. Journal of Economic Entomology, 110(5), 2235–2246.

    Article  CAS  Google Scholar 

  26. Oerke, E. (2006). Crop losses to pests. The Journal of Agricultural Science, 144, 31.

    Article  Google Scholar 

  27. Lal, S., Rana, V., Sapra, R., & Singh, K. (2005). Screening and utilization of soybean germplasm for breeding resistance against Mungbean Yellow Mosaic Virus. Soybean Genet News Letter, 1, 32.

    Google Scholar 

  28. Hajimorad, M., Domier, L. L., Tolin, S., Whitham, S., & Saghai Maroof, M. (2018). Soybean mosaic virus: A successful potyvirus with a wide distribution but restricted natural host range. Molecular Plant Pathology., 19(7), 1563–1579.

    Article  CAS  Google Scholar 

  29. Buttle, L., Burrells, A., Good, J., Williams, P., Southgate, P., & Burrells, C. (2001). The binding of soybean agglutinin (SBA) to the intestinal epithelium of Atlantic salmon, Salmo salar and Rainbow trout, Oncorhynchus mykiss, fed high levels of soybean meal. Veterinary Immunology and Immunopathology, 80(3–4), 237–244.

    Article  CAS  Google Scholar 

  30. Grant, G. (1989). Anti-nutritional effects of soyabean: A review. Progress in Food & Nutrition Science., 13(3–4), 317–348.

    CAS  Google Scholar 

  31. Liener, I. E. (1994). Implications of antinutritional components in soybean foods. Critical Reviews in Food Science & Nutrition., 34(1), 31–67.

    Article  CAS  Google Scholar 

  32. Potter, L. & Potchanakorn, M. (1985). Digestibility of the carbohydrate fraction of soybean meal by poultry.

  33. Jaffe, G. (1981). Phytic acid in soybeans. Journal of the American Oil Chemists’ Society., 58(3), 493–495.

    Article  CAS  Google Scholar 

  34. Wang, Y.-C., Klein, T. M., Fromm, M., Cao, J., Sanford, J. C., & Wu, R. (1988). Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Molecular Biology, 11(4), 433–439.

    Article  CAS  Google Scholar 

  35. Hinchee, M. A., Connor-Ward, D. V., Newell, C. A., McDonnell, R. E., Sato, S. J., Gasser, C. S., et al. (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nature Biotechnology., 6(8), 915.

    Article  CAS  Google Scholar 

  36. Carpenter, J. E., & Gianessi, L. P. (2001). Agricultural biotechnology: Updated benefit estimates. Washington, DC: National Center for Food and Agricultural Policy.

    Google Scholar 

  37. James, C. (2003). Global review of commercialized transgenic crops. Current Science., 84(3), 303–309.

    Google Scholar 

  38. Scheitrum, D., Schaefer, K. A., & Nes, K. (2020). Realized and potential global production effects from genetic engineering. Food Policy, 93, 101882.

    Article  Google Scholar 

  39. Green, J. M., Hazel, C. B., Forney, D. R., & Pugh, L. M. (2008). New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate. Pest Management Science., 64(4), 332–339.

    Article  CAS  Google Scholar 

  40. Waltz, E. (2010). Food firms test fry Pioneer’s trans fat-free soybean oil. Nature Biotechnology, 28, 769.

    Article  CAS  Google Scholar 

  41. Pham, A. T., Lee, J.-D., Shannon, J. G., & Bilyeu, K. D. (2010). Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biology, 10, 195–195.

    Article  Google Scholar 

  42. Pham, A. T., Shannon, J. G., & Bilyeu, K. D. (2012). Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theoretical and Applied Genetics, 125(3), 503–515.

    Article  CAS  Google Scholar 

  43. Demorest, Z. L., Coffman, A., Baltes, N. J., Stoddard, T. J., Clasen, B. M., Luo, S., et al. (2016). Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biology., 16(1), 225.

    Article  Google Scholar 

  44. Benbrook, C. (1999). Evidence of the magnitude and consequences of the Roundup Ready soybean yield drag from university-based varietal trials in 1998 (Vol. 1): Citeseer.

  45. Phillips, M. (2011). The cost and time involved in the discovery, development and authorization of a new plant biotechnology derived trait. Crop Life International 1–24.

  46. Hesler, L. S. (2013). Resistance to soybean aphid among wild soybean lines under controlled conditions. Crop Protection., 53, 139–146.

    Article  Google Scholar 

  47. Bales, C., Zhang, G., Liu, M., Mensah, C., Gu, C., Song, Q., et al. (2013). Mapping soybean aphid resistance genes in PI 567598B. Theoretical and Applied Genetics., 126(8), 2081–2091.

    Article  CAS  Google Scholar 

  48. Hill, C. B., Li, Y., & Hartman, G. L. (2006). A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Science., 46(4), 1601–1605.

    Article  Google Scholar 

  49. Jun, T., Mian, M. R., & Michel, A. (2013). Genetic mapping of three quantitative trait loci for soybean aphid resistance in PI 567324. Heredity, 111(1), 16–22.

    Article  CAS  Google Scholar 

  50. Li, Y., Hill, C. B., Carlson, S. R., Diers, B. W., & Hartman, G. L. (2007). Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. Molecular Breeding, 19(1), 25–34.

    Article  CAS  Google Scholar 

  51. Mian, M. R., Kang, S.-T., Beil, S. E., & Hammond, R. B. (2008). Genetic linkage mapping of the soybean aphid resistance gene in PI 243540. Theoretical and Applied Genetics., 117(6), 955–962.

    Article  Google Scholar 

  52. Zhang, G., Gu, C., & Wang, D. (2009). Molecular mapping of soybean aphid resistance genes in PI 567541B. Theoretical and Applied Genetics, 118(3), 473–482.

    Article  CAS  Google Scholar 

  53. Kim, K.-S., Hill, C. B., Hartman, G. L., Hyten, D. L., Hudson, M. E., & Diers, B. W. (2010). Fine mapping of the soybean aphid-resistance gene Rag2 in soybean PI 200538. Theoretical and Applied Genetics., 121(3), 599–610.

    Article  CAS  Google Scholar 

  54. Zhang, F., Maeder, M. L., Unger-Wallace, E., Hoshaw, J. P., Reyon, D., Christian, M., et al. (2010). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences, 107(26), 12028–12033.

    Article  CAS  Google Scholar 

  55. Kim, K.-S., Hill, C. B., Hartman, G. L., Mian, M., & Diers, B. W. (2008). Discovery of soybean aphid biotypes. Crop Science., 48(3), 923–928.

    Article  Google Scholar 

  56. Stewart, C. N., Jr., Adang, M. J., All, J. N., Boerma, H. R., Cardineau, G., & D. Tucker & Parrott, W. A. (1996). Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiology, 112(1), 121–129.

    Article  CAS  Google Scholar 

  57. Furutani, N., Hidaka, S., Kosaka, Y., Shizukawa, Y., & Kanematsu, S. (2006). Coat protein gene-mediated resistance to soybean mosaic virus in transgenic soybean. Breeding Science., 56(2), 119–124.

    Article  CAS  Google Scholar 

  58. Kim, H. J., Kim, M.-J., Pak, J. H., Im, H. H., Lee, D. H., Kim, K.-H., Lee, J.-H., Kim, D.-H., Choi, H. K., & Jung, H. W. (2016). RNAi-mediated Soybean mosaic virus (SMV) resistance of a Korean Soybean cultivar. Springer.

    Book  Google Scholar 

  59. Yang, J., Xing, G., Niu, L., He, H., Guo, D., Du, Q., et al. (2018). Improved oil quality in transgenic soybean seeds by RNAi-mediated knockdown of GmFAD2-1B. Transgenic Research, 27(2), 155–166.

    Article  Google Scholar 

  60. Kumari, A., Hada, A., Subramanyam, K., Theboral, J., Misra, S., Ganapathi, A., & Malathi, V. G. (2018). RNAi-mediated resistance to yellow mosaic viruses in soybean targeting coat protein gene. Acta Physiologiae Plantarum, 40(2), 32.

    Article  Google Scholar 

  61. Singh, V. B., Haq, Q., & Malathi, V. (2013). Antisense RNA approach targeting Rep gene of Mungbean yellow mosaic India virus to develop resistance in soybean. Archives of Phytopathology and Plant Protection, 46(18), 2191–2207.

    Article  CAS  Google Scholar 

  62. Lund, M. E., Mourtzinis, S., Conley, S. P., & Ané, J. M. (2018). Soybean cyst nematode control with Pasteuria nishizawae under different management practices. Agronomy Journal, 110(6), 2534–2540.

    Article  CAS  Google Scholar 

  63. Cook, D. E., Lee, T. G., Guo, X., Melito, S., Wang, K., Bayless, A. M., et al. (2012). Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 338(6111), 1206–1209.

    Article  CAS  Google Scholar 

  64. Lin, J., Mazarei, M., Zhao, N., Hatcher, C. N., Wuddineh, W. A., Rudis, M., et al. (2016). Transgenic soybean overexpressing Gm SAMT 1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines. Plant Biotechnology Journal., 14(11), 2100–2109.

    Article  CAS  Google Scholar 

  65. Lu, L., Dong, C., Liu, R., Zhou, B., Wang, C., & Shou, H. (2018). Roles of soybean plasma membrane intrinsic protein GmPIP2; 9 in drought tolerance and seed development. Frontiers in Plant Science., 9, 530.

    Article  Google Scholar 

  66. Bhatnagar-Mathur, P., Devi, M. J., Reddy, D. S., Lavanya, M., Vadez, V., Serraj, R., et al. (2007). Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports, 26(12), 2071–2082.

    Article  CAS  Google Scholar 

  67. Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany., 58(2), 221–227.

    Article  CAS  Google Scholar 

  68. Fuganti-Pagliarini, R., Ferreira, L. C., Rodrigues, F. A., Molinari, H. B., Marin, S. R., Molinari, M. D., et al. (2017). Characterization of soybean genetically modified for drought tolerance in field conditions. Frontiers in Plant Science., 8, 448.

    Article  Google Scholar 

  69. Polizel, A., Medri, M., Nakashima, K., Yamanaka, N., Farias, J., de Oliveira, M., Marin, S., Abdelnoor, R., Marcelino, F., & Fuganti, R. (2011). Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A: AtDREB1A for the improvement of drought tolerance. Genetics and Molecular Research, 10(4), 3641–3656.

    Article  CAS  Google Scholar 

  70. Hamwieh, A., Tuyen, D., Cong, H., Benitez, E., Takahashi, R., & Xu, D. (2011). Identification and validation of a major QTL for salt tolerance in soybean. Euphytica, 179(3), 451–459.

    Article  Google Scholar 

  71. He, Y., Yang, X., Xu, C., Guo, D., Niu, L., Wang, Y., et al. (2018). Overexpression of a novel transcriptional repressor GmMYB3a negatively regulates salt–alkali tolerance and stress-related genes in soybean. Biochemical and Biophysical Research Communications., 498(3), 586–591.

    Article  CAS  Google Scholar 

  72. An, J., Cheng, C., Hu, Z., Chen, H., Cai, W., & Yu, B. (2018). The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS. Environmental and Experimental Botany., 155, 45–55.

    Article  CAS  Google Scholar 

  73. Cao, D., Hou, W., Liu, W., Yao, W., Wu, C., Liu, X., & Han, T. (2011). Overexpression of TaNHX2 enhances salt tolerance of ‘composite’and whole transgenic soybean plants. Plant Cell, Tissue and Organ Culture., 107(3), 541–552.

    Article  CAS  Google Scholar 

  74. Li, T. Y., Zhang, Y., Liu, H., Wu, Y., Li, W., & Zhang, H. (2010). Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chinese Science Bulletin, 55(12), 1127–1134.

    Article  CAS  Google Scholar 

  75. Wang, Y., Jiang, L., Chen, J., Tao, L., An, Y., Cai, H., & Guo, C. (2018). Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS ONE, 13(2), e092382.

    Article  Google Scholar 

  76. Cheng, C., Li, C., Wang, D., Zhai, L., & Cai, Z. (2018). The soybean gmNARK affects ABA and salt responses in transgenic Arabidopsis thaliana. Frontiers in Plant Science., 9, 514.

    Article  Google Scholar 

  77. Ahmed, F., Rafii, M., Ismail, M. R., Juraimi, A. S., Rahim, H., Asfaliza, R., & Latif, M. A. (2013). Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMedical Research International, 1, 10. https://doi.org/10.1155/2013/963525

    Article  CAS  Google Scholar 

  78. Sullivan, M., VanToai, T., Fausey, N., Beuerlein, J., Parkinson, R., & Soboyejo, A. (2001). Evaluating on-farm flooding impacts on soybean. Crop Science, 41(1), 93–100.

    Article  Google Scholar 

  79. Zhao, T., Aleem, M., & Sharmin, R. A. (2018). Adaptation to water stress in soybean: morphology to genetics. Plant, abiotic stress and responses to climate change. Intech Open, London, pp. 33–68.

  80. Lu, Y., An, Y., Lv, C., Ma, W., Xi, Y., & Xiao, R. (2018). Dietary soybean isoflavones in Alzheimer’s disease prevention. Asia Pacific Journal of Clinical Nutrition, 27(5), 946–954.

    CAS  Google Scholar 

  81. Subramanian, S., Graham, M. Y., Yu, O., & Graham, T. L. (2005). RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiology, 137(4), 1345–1353.

    Article  CAS  Google Scholar 

  82. Funaki, A., Waki, T., Noguchi, A., Kawai, Y., Yamashita, S., Takahashi, S., & Nakayama, T. (2015). Identification of a highly specific isoflavone 7-O-glucosyltransferase in the soybean (Glycine max (L.) Merr.). Plant and Cell Physiology, 56(8), 1512–1520.

    Article  CAS  Google Scholar 

  83. Zhao, M., Wang, T., Wu, P., Guo, W., Su, L., Wang, Y., et al. (2017). Isolation and characterization of GmMYBJ3, an R2R3-MYB transcription factor that affects isoflavonoids biosynthesis in soybean. PLoS ONE, 12(6), e0179990.

    Article  Google Scholar 

  84. Chu, S., Wang, J., Zhu, Y., Liu, S., Zhou, X., Zhang, H., et al. (2017). An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genetics., 13(5), 100–6770.

    Article  Google Scholar 

  85. Cheng, Q., Li, N., Dong, L., Zhang, D., Fan, S., Jiang, L., et al. (2015). Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Frontiers in Plant Science., 6, 1024.

    Article  Google Scholar 

  86. Veremeichik, G., Grigorchuk, V., Silanteva, S., Shkryl, Y., Bulgakov, D., Brodovskaya, E., & Bulgakov, V. (2019). Increase in isoflavonoid content in Glycine max cells transformed by the constitutively active Ca2+ independent form of the AtCPK1 gene. Phytochemistry, 157, 111–120.

    Article  CAS  Google Scholar 

  87. Kim, M. J., Kim, J. K., Kim, H. J., Pak, J. H., Lee, J. H., Kim, D. H., et al. (2012). Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS ONE, 7(10), e48287.

    Article  CAS  Google Scholar 

  88. Zimmermann, R., & Qaim, M. (2004). Potential health benefits of Golden Rice: A Philippine case study. Food Policy, 29(2), 147–168.

    Article  Google Scholar 

  89. Kim, W.-S., Chronis, D., Juergens, M., Schroeder, A. C., Hyun, S. W., Jez, J. M., & Krishnan, H. B. (2012). Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase accumulate enhanced levels of cysteine and Bowman-Birk protease inhibitor in seeds. Planta, 235(1), 13–23.

    Article  CAS  Google Scholar 

  90. Karunanandaa, B., Qi, Q., Hao, M., Baszis, S. R., Jensen, P. K., Wong, Y.-H.H., et al. (2005). Metabolically engineered oilseed crops with enhanced seed tocopherol. Metabolic Engineering, 7(5–6), 384–400.

    Article  CAS  Google Scholar 

  91. Van Eenennaam, A. L., Lincoln, K., Durrett, T. P., Valentin, H. E., Shewmaker, C. K., Thorne, G. M., et al. (2003). Engineering vitamin E content: From Arabidopsis mutant to soy oil. The Plant Cell, 15(12), 3007–3019.

    Article  Google Scholar 

  92. Tavva, V. S., Kim, Y.-H., Kagan, I. A., Dinkins, R. D., Kim, K.-H., & Collins, G. B. (2007). Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Reports, 26(1), 61–70.

    Article  CAS  Google Scholar 

  93. Krishnan, H. B., & Jez, J. M. (2018). The promise and limits for enhancing sulfur-containing amino acid content of soybean seed. Plant Science, 272, 14–21.

    Article  CAS  Google Scholar 

  94. El-Shemy, H., Khalafalla, M., Fujita, K., & Ishimoto, M. (2007). Improvement of protein quality in transgenic soybean plants. Biologia Plantarum., 51(2), 277–284.

    Article  CAS  Google Scholar 

  95. Koshiyama, I. (1968). Chemical and physical properties of a 7S protein in soybean globulins. Cereal Chemistry, 45, 394–404.

    CAS  Google Scholar 

  96. Falco, S., Guida, T., Locke, M., Mauvais, J., Sanders, C., Ward, R., & Webber, P. (1995). Transgenic canola and soybean seeds with increased lysine. Biotechnology, 13(6), 577–582.

    CAS  Google Scholar 

  97. Flores, T., Karpova, O., Su, X., Zeng, P., Bilyeu, K., Sleper, D. A., et al. (2008). Silencing of Gm FAD3 gene by siRNA leads to low α-linolenic acids (18: 3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Research., 17(5), 839–850.

    Article  CAS  Google Scholar 

  98. Chen, W., Song, K., Cai, Y., Li, W., Liu, B., & Liu, L. (2011). Genetic modification of soybean with a novel grafting technique: Downregulating the FAD2-1 gene increases oleic acid content. Plant Molecular Biology Reporter., 29(4), 866–874.

    Article  CAS  Google Scholar 

  99. Bilyeu, K., Škrabišová, M., Allen, D., Rajcan, I., Palmquist, D. E., Gillen, A., et al. (2018). The interaction of the soybean seed high oleic acid oil trait with other fatty acid modifications. Journal of the American Oil Chemists’ Society., 95(1), 39–49.

    Article  CAS  Google Scholar 

  100. Valentine, M. F., De Tar, J. R., Mookkan, M., Firman, J. D., & Zhang, Z. J. (2017). Silencing of soybean raffinose synthase gene reduced raffinose family oligosaccharides and increased true metabolizable energy of poultry feed. Frontiers in Plant Science., 8, 692.

    Article  Google Scholar 

  101. Krishnan, H. B., Kim, W.-S., Jang, S., & Kerley, M. S. (2009). All three subunits of soybean β-conglycinin are potential food allergens. Journal of Agricultural and Food Chemistry, 57(3), 938–943.

    Article  CAS  Google Scholar 

  102. Herman, E. M., Helm, R. M., Jung, R., & Kinney, A. J. (2003). Genetic modification removes an immunodominant allergen from soybean. Plant Physiology., 132(1), 36–43.

    Article  CAS  Google Scholar 

  103. Watanabe, D., Lošák, T., & Vollmann, J. (2018). From proteomics to ionomics: Soybean genetic improvement for better food safety. Genetika, 50(1), 333–350.

    Article  Google Scholar 

  104. Liu, X., Wu, S., Xu, J., Sui, C., & Wei, J. (2017). Application of CRISPR/Cas9 in plant biology. Acta Pharmaceutica Sinica B., 7(3), 292–302.

    Article  Google Scholar 

  105. Zaidi, S., & S.-e.-A., Vanderschuren, H., Qaim, M., Mahfouz, M. M., Kohli, A., Mansoor, S., & Tester, M. (2019). New plant breeding technologies for food security. Science, 363(6434), 1390–1391.

    Article  CAS  Google Scholar 

  106. Osakabe, K., Osakabe, Y., & Toki, S. (2010). Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proceedings of the National Academy of Sciences, 107(26), 12034–12039.

    Article  CAS  Google Scholar 

  107. Du, H., Zeng, X., Zhao, M., Cui, X., Wang, Q., Yang, H., et al. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology., 217, 90–97.

    Article  CAS  Google Scholar 

  108. Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., et al. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology., 87(1–2), 99–110.

    Article  CAS  Google Scholar 

  109. Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., & Zhu, J.-K. (2013). Application of the CRISPR–Cas system for efficient genome engineering in plants. Molecular Plant, 6(6), 2008–2011.

    Article  CAS  Google Scholar 

  110. Schiml, S., Fauser, F., & Puchta, H. (2014). The CRISPR/C as system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in A rabidopsis resulting in heritable progeny. The Plant Journal, 80(6), 1139–1150.

    Article  CAS  Google Scholar 

  111. Upadhyay, S. K., Kumar, J., Alok, A., & Tuli, R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics, 3(12), 2233–2238.

    Article  Google Scholar 

  112. Curtin, S. J., Voytas, D. F., & Stupar, R. M. (2012). Genome engineering of crops with designer nucleases. The Plant Genome, 5(2), 42–50.

    Article  CAS  Google Scholar 

  113. Mohanta, T. K., Bashir, T., Hashem, A., Abd Allah, E. F., & Bae, H. (2017). Genome editing tools in plants. Genes., 8(12), 399.

    Article  Google Scholar 

  114. Sánchez-Rivera, F. J., & Jacks, T. (2015). Applications of the CRISPR–Cas9 system in cancer biology. Nature Reviews Cancer, 15(7), 387–395.

    Article  Google Scholar 

  115. Weinthal, D., Tovkach, A., Zeevi, V., & Tzfira, T. (2010). Genome editing in plant cells by zinc finger nucleases. Trends in Plant Science, 15(6), 308–321.

    Article  CAS  Google Scholar 

  116. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959), 1509–1512.

    Article  CAS  Google Scholar 

  117. Deveau, H., Garneau, J. E., & Moineau, S. (2010). CRISPR/Cas system and its role in phage-bacteria interactions. Annual Review of Microbiology., 64, 475–493.

    Article  CAS  Google Scholar 

  118. Joung, J. K., & Sander, J. D. (2013). TALENs: A widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14(1), 49–55.

    Article  CAS  Google Scholar 

  119. Sorek, R., Lawrence, C. M., & Wiedenheft, B. (2013). CRISPR-mediated adaptive immune systems in bacteria and archaea. Annual Review of Biochemistry., 82, 237–266.

    Article  CAS  Google Scholar 

  120. Sun, X., Hu, Z., Chen, R., Jiang, Q., Song, G., Zhang, H., & Xi, Y. (2015). Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Scientific Reports, 5(1), 1–10.

    Google Scholar 

  121. Gao, H., Wu, X., Chai, J., & Han, Z. (2012). Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Research, 22(12), 1716–1720.

    Article  CAS  Google Scholar 

  122. El-Mounadi, K., Morales-Floriano, M. L., & Garcia-Ruiz, H. (2020). Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00056

    Article  Google Scholar 

  123. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., & Qiu, J. L. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8), 686–688.

    Article  CAS  Google Scholar 

  124. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712.

    Article  CAS  Google Scholar 

  125. Hille, F., & Charpentier, E. (2016). CRISPR-Cas: Biology, mechanisms and relevance. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1707), 20150496.

    Article  Google Scholar 

  126. Murovec, J., Pirc, Z., & Yang, B. (2017). New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnology Journal., 15(8), 917–926.

    Article  CAS  Google Scholar 

  127. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.

    Article  CAS  Google Scholar 

  128. Sonoda, E., Hochegger, H., Saberi, A., Taniguchi, Y., & Takeda, S. (2006). Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair, 5(9–10), 1021–1029.

    Article  CAS  Google Scholar 

  129. Barnes, D. E. (2001). Non-homologous end joining as a mechanism of DNA repair. Current Biology, 11(12), R455–R457.

    Article  CAS  Google Scholar 

  130. Čermák, T., Curtin, S. J., Gil-Humanes, J., Cegan, R., Kono, T. J., Konečná, E., et al. (2017). A multipurpose toolkit to enable advanced genome engineering in plants. The Plant Cell, 29(6), 1196–1217.

    Article  Google Scholar 

  131. Curtin, S. J., Xiong, Y., Michno, J. M., Campbell, B. W., Stec, A. O., Čermák, T., et al. (2018). Crispr/cas9 and talen s generate heritable mutations for genes involved in small RNA processing of glycine max and medicago truncatula. Plant Biotechnology Journal., 16(6), 1125–1137.

    Article  CAS  Google Scholar 

  132. Osakabe, Y., & Osakabe, K. (2015). Genome editing with engineered nucleases in plants. Plant and Cell Physiology., 56(3), 389–400.

    Article  CAS  Google Scholar 

  133. Schaeffer, S. M., & Nakata, P. A. (2015). CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Plant Science, 240, 130–142.

    Article  CAS  Google Scholar 

  134. Liu, X., Xie, C., Si, H., & Yang, J. (2017). CRISPR/Cas9-mediated genome editing in plants. Methods, 121, 94–102.

    Article  CAS  Google Scholar 

  135. Butt, H., Rao, G. S., Sedeek, K., Aman, R., Kamel, R., & Mahfouz, M. (2020). Engineering herbicide resistance via prime editing in rice. Plant Biotechnology Journal, 18(12), 2370.

    Article  CAS  Google Scholar 

  136. Soda, N., Verma, L., & Giri, J. (2018). CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances. Plant Physiology and Biochemistry., 131, 2–11.

    Article  CAS  Google Scholar 

  137. Katayose, Y., Kanamori, H., Shimomura, M., Ohyanagi, H., Ikawa, H., Minami, H., et al. (2012). DaizuBase, an integrated soybean genome database including BAC-based physical maps. Breeding Science, 61(5), 661–664.

    Article  CAS  Google Scholar 

  138. Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., et al. (2020). Pan-genome of wild and cultivated soybeans. Cell, 182(1), 162–176.

    Article  CAS  Google Scholar 

  139. Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463(7278), 178–183.

    Article  CAS  Google Scholar 

  140. Haun, W., Coffman, A., Clasen, B. M., Demorest, Z. L., Lowy, A., Ray, E., et al. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal., 12(7), 934–940.

    Article  CAS  Google Scholar 

  141. Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C., Jiang, B., et al. (2015). CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE, 10(8), e0136064.

    Article  Google Scholar 

  142. Jacobs, T. B., LaFayette, P. R., Schmitz, R. J., & Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15(1), 16.

    Article  Google Scholar 

  143. Elvira-Torales, L. I., García-Alonso, J., & Periago-Castón, M. J. (2019). Nutritional importance of carotenoids and their effect on liver health: A review. Antioxidants., 8(7), 229.

    Article  CAS  Google Scholar 

  144. Li, Z., Liu, Z.-B., Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L., et al. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiology, 169(2), 960–970.

    Article  Google Scholar 

  145. Bao, A., Chen, H., Chen, L., Chen, S., Hao, Q., Guo, W., et al. (2019). CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biology, 19(1), 131.

    Article  Google Scholar 

  146. Tang, F., Yang, S., Liu, J., & Zhu, H. (2016). Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiology, 170(1), 26–32.

    Article  CAS  Google Scholar 

  147. Michno, J.-M., Wang, X., Liu, J., Curtin, S. J., Kono, T. J., & Stupar, R. M. (2015). CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops & Food, 6(4), 243–252.

    Article  Google Scholar 

  148. Curtin, S. J., Zhang, F., Sander, J. D., Haun, W. J., Starker, C., Baltes, N. J., et al. (2011). Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiology., 156(2), 466–473.

    Article  CAS  Google Scholar 

  149. Cai, Y., Chen, L., Liu, X., Guo, C., Sun, S., Wu, C., et al. (2018). CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnology Journal, 16(1), 176–185.

    Article  CAS  Google Scholar 

  150. Cai, Y., Wang, L., Chen, L., Wu, T., Liu, L., Sun, S., et al. (2020). Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnology Journal., 18(1), 298–309.

    Article  CAS  Google Scholar 

  151. Wu, N., Lu, Q., Wang, P., Zhang, Q., Zhang, J., Qu, J., & Wang, N. (2020). Construction and analysis of GmFAD2-1A and GmFAD2-2A soybean fatty acid desaturase mutants based on CRISPR/Cas9 technology. International Journal of Molecular Sciences., 21(3), 1104.

    Article  CAS  Google Scholar 

  152. Bonawitz, N. D., Ainley, W. M., Itaya, A., Chennareddy, S. R., Cicak, T., Effinger, K., Jiang, K., Mall, T. K., Marri, P. R., & Samuel, J. P. (2019). Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining. Plant Biotechnology Journal, 17(4), 750–761.

    Article  CAS  Google Scholar 

  153. Kanazashi, Y., Hirose, A., Takahashi, I., Mikami, M., Endo, M., Hirose, S., et al. (2018). Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Reports, 37(3), 553–563.

    Article  CAS  Google Scholar 

  154. Di, Y.-H., Sun, X.-J., Hu, Z., Jiang, Q.-Y., Song, G.-H., Zhang, B., et al. (2019). Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. Biochemical and Biophysical Research Communications, 519(4), 819–823.

    Article  CAS  Google Scholar 

  155. Do, P. T., Nguyen, C. X., Bui, H. T., Tran, L. T., Stacey, G., Gillman, J. D., et al. (2019). Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biology., 19(1), 311.

    Article  Google Scholar 

  156. Li, C., Nguyen, V., Liu, J., Fu, W., Chen, C., Yu, K., & Cui, Y. (2019). Mutagenesis of seed storage protein genes in Soybean using CRISPR/Cas9. BMC Research Notes., 12(1), 176.

    Article  Google Scholar 

  157. Al Amin, N., Ahmad, N., Nan, W., Xiuming, F., Nan, W., Xiaoxue, B., et al. (2018). An efficient transient assay for CRISPR CAS9 system delivering targeted mutation using synthetic oligo SgRNA in soybean (Glycine max). Pakistan Journal of Botany, 50(6), 2223–2230.

    CAS  Google Scholar 

  158. Bai, M., Yuan, J., Kuang, H., Gong, P., Li, S., Zhang, Z., et al. (2020). Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnology Journal., 18(3), 721–731.

    Article  CAS  Google Scholar 

  159. Sander, J. D., Dahlborg, E. J., Goodwin, M. J., Cade, L., Zhang, F., Cifuentes, D., et al. (2011). Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods, 8(1), 67–69.

    Article  CAS  Google Scholar 

  160. Kim, H., Kim, S. T., Ryu, J., Kang, B. C., Kim, J. S., & Kim, S. G. (2017). CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications, 8(1), 1–7.

    Google Scholar 

  161. Wang, J., Kuang, H., Zhang, Z., Yang, Y., Yan, L., Zhang, M., et al. (2019). Generation of seed lipoxygenase-free soybean using CRISPR-Cas9. The Crop Journal, 8(3), 432–439.

    Article  Google Scholar 

  162. Campbell, B. W., Hoyle, J. W., Bucciarelli, B., Stec, A. O., Samac, D. A., Parrott, W. A., & Stupar, R. M. (2019). Functional analysis and development of a CRISPR/Cas9 allelic series for a CPR5 ortholog necessary for proper growth of soybean trichomes. Scientific Reports, 9(1), 1–11.

    Article  Google Scholar 

  163. Wang, L., Sun, S., Wu, T., Liu, L., Sun, X., Cai, Y., et al. (2020). Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnology Journal, 18, 1869–1881.

    Article  CAS  Google Scholar 

  164. Cai, Y., Chen, L., Zhang, Y., Yuan, S., Su, Q., Sun, S., et al. (2020). Target base editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnology Journal., 18(10), 1996–1998.

    Article  Google Scholar 

  165. Zhang, P., Du, H., Wang, J., Pu, Y., Yang, C., Yan, R., et al. (2020). Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnology Journal, 18(6), 1384–1395.

    Article  CAS  Google Scholar 

  166. Cheng, Q., Dong, L., Su, T., Li, T., Gan, Z., Nan, H., et al. (2019). CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biology, 19(1), 1–11.

    Article  Google Scholar 

  167. Yang, C., Huang, Y., Lv, W., Zhang, Y., Bhat, J. A., Kong, J., et al. (2020). GmNAC8 acts as a positive regulator in soybean drought stress. Plant Science, 293, 110442.

    Article  CAS  Google Scholar 

  168. Li, C., Li, Y.-H., Li, Y., Lu, H., Hong, H., Tian, Y., et al. (2020). A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in Soybean. Molecular Plant, 13(5), 745–759.

    Article  CAS  Google Scholar 

  169. Wang, Y., Yuan, L., Su, T., Wang, Q., Gao, Y., Zhang, S., et al. (2020). Light-and temperature-entrainable circadian clock in soybean development. Plant, Cell & Environment., 43(3), 637–648.

    Article  CAS  Google Scholar 

  170. Zheng, N., Li, T., Dittman, J. D., Su, J., Li, R., Gassmann, W., et al. (2020). CRISPR/Cas9-based gene editing using egg cell-specific promoters in Arabidopsis and soybean. Frontiers in Plant Science, 11, 800.

    Article  Google Scholar 

  171. Ge, L., Yu, J., Wang, H., Luth, D., Bai, G., Wang, K., & Chen, R. (2016). Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proceedings of the National Academy of Sciences., 113(44), 12414–12419.

    Article  CAS  Google Scholar 

  172. Stacey, M. G., Cahoon, R. E., Nguyen, H. T., Cui, Y., Sato, S., Nguyen, C. T., et al. (2016). Identification of homogentisate dioxygenase as a target for vitamin E biofortification in oilseeds. Plant Physiology, 172(3), 1506–1518.

    Article  CAS  Google Scholar 

  173. Tang, X., Su, T., Han, M., Wei, L., Wang, W., Yu, Z., et al. (2017). Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). Journal of Experimental Botany, 68(3), 469–482.

    CAS  Google Scholar 

  174. Ping, J., Liu, Y., Sun, L., Zhao, M., Li, Y., She, M., et al. (2014). Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. The Plant Cell, 26(7), 2831–2842.

    Article  CAS  Google Scholar 

  175. Xu, J., Kang, B. C., Naing, A. H., Bae, S. J., Kim, J. S., Kim, H., & Kim, C. K. (2020). CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnology Journal, 18(1), 287–297.

    Article  CAS  Google Scholar 

  176. Liu, W., Jiang, B., Ma, L., Zhang, S., Zhai, H., Xu, X., et al. (2018). Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytologist, 217(3), 1335–1345.

    Article  CAS  Google Scholar 

  177. Guo, W., Chen, L., Chen, H., Yang, H., You, Q., Bao, A., et al. (2020). Overexpression of GmWRI1b in soybean stably improves plant architecture and associated yield parameters, and increases total seed oil production under field conditions. Plant Biotechnology Journal., 18(8), 1639–1641.

    Article  CAS  Google Scholar 

  178. Zhang, G., Bahn, S.-C., Wang, G., Zhang, Y., Chen, B., Zhang, Y., et al. (2019). PLDα1-knockdown soybean seeds display higher unsaturated glycerolipid contents and seed vigor in high temperature and humidity environments. Biotechnology for Biofuels, 12(1), 1–23.

    Article  Google Scholar 

  179. Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., et al. (2016). Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants, 2(10), 1–6.

    Article  Google Scholar 

  180. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., et al. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17(7), 1140–1153.

    Article  CAS  Google Scholar 

  181. Shan, Q., & Voytas, D. F. (2018). Editing plant genes one base at a time. Nature Plants, 4(7), 412–413.

    Article  CAS  Google Scholar 

  182. Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., et al. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology., 35(5), 438.

    Article  CAS  Google Scholar 

  183. Butt, H., Eid, A., Ali, Z., Atia, M. A., Mokhtar, M. M., Hassan, N., et al. (2017). Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Frontiers in Plant Science, 8, 1441.

    Article  Google Scholar 

  184. Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science. https://doi.org/10.1126/science.1258096

    Article  Google Scholar 

  185. Wang, M., Lu, Y., Botella, J. R., Mao, Y., Hua, K., & Zhu, J.-K. (2017). Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Molecular Plant, 10(7), 1007–1010.

    Article  CAS  Google Scholar 

  186. Csörgő, B., León, L. M., Chau-Ly, I. J., Vasquez-Rifo, A., Berry, J. D., Mahendra, C., et al. (2020). A compact Cascade–Cas3 system for targeted genome engineering. Nature Methods, 1–8.

  187. Ali, Z., Shami, A., Sedeek, K., Kamel, R., Alhabsi, A., Tehseen, M., et al. (2020). Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Communications Biology, 3(1), 1–13.

    Article  Google Scholar 

  188. Araki, M., & Ishii, T. (2015). Towards social acceptance of plant breeding by genome editing. Trends in Plant Science, 20(3), 145–149.

    Article  CAS  Google Scholar 

  189. Nakajima, O., Nishimaki-Mogami, T., & Kondo, K. (2016). Cas9 in genetically modified food is unlikely to cause food allergy. Biological and Pharmaceutical Bulletin, 39(11), 1876–1880.

    Article  CAS  Google Scholar 

  190. Servick, K. (2015). US to review agricultural biotech regulations. American Association for the Advancement of Science. 131.

  191. Gao, C. (2018). The future of CRISPR technologies in agriculture. Nature Reviews Molecular Cell Biology., 19(5), 275–276.

    Article  CAS  Google Scholar 

  192. Jones, H. D. (2015). Regulatory uncertainty over genome editing. Nature Plants, 1(1), 1–3.

    Article  Google Scholar 

  193. Seyran, E., & Craig, W. (2018). New breeding techniques and their possible regulation. AgBioforum, 21(1), 1–12.

    Google Scholar 

  194. Duensing, N., Sprink, T., Parrott, W. A., Fedorova, M., Lema, M. A., Wolt, J. D., & Bartsch, D. (2018). Novel features and considerations for ERA and regulation of crops produced by genome editing. Frontiers in Bioengineering and Biotechnology., 6, 79.

    Article  Google Scholar 

  195. Jones, H. D. (2015). Future of breeding by genome editing is in the hands of regulators. GM Crops & Food., 6(4), 223–232.

    Article  Google Scholar 

  196. Parrott, W. (2018). Outlaws, old laws and no laws: The prospects of gene editing for agriculture in United States. Physiologia Plantarum, 164(4), 406–411.

    Article  CAS  Google Scholar 

  197. Mackelprang, R., & Lemaux, P. G. (2020). Genetic engineering and editing of plants: an analysis of new and persisting questions. Annual Review of Plant Biology, 71, 659–687.

    Article  CAS  Google Scholar 

  198. Khandelwal, R., & Jain, M. (2018). Genome engineering tools for functional genomics and crop improvement in legumes. Pulse Improvement (pp. 219–234). Springer.

  199. Zhang, D., Hussain, A., Manghwar, H., Xie, K., Xie, S., Zhao, S., et al. (2020). Genome editing with the CRISPR-Cas system: An art, ethics and global regulatory perspective. Plant Biotechnology Journal., 18(8), 1651–1669.

    Article  Google Scholar 

  200. Ahmad, S., Wei, X., Sheng, Z., Hu, P., & Tang, S. (2020). CRISPR/Cas9 for development of disease resistance in plants: Recent progress, limitations and future prospects. Briefings in Functional Genomics, 19(1), 26–39.

    Article  CAS  Google Scholar 

  201. Mao, Y., Zhang, Z., Feng, Z., Wei, P., Zhang, H., Botella, J. R., & Zhu, J. K. (2016). Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnology Journal, 14(2), 519–532.

    Article  CAS  Google Scholar 

  202. Ali, Z., Ali, S., Tashkandi, M., Zaidi, S., & S.-e.-A., & Mahfouz, M. M. (2016). CRISPR/Cas9-mediated immunity to geminiviruses: Differential interference and evasion. Scientific Reports, 6(1), 1–13.

    Google Scholar 

  203. Pyott, D. E., Sheehan, E., & Molnar, A. (2016). Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Molecular Plant Pathology, 17(8), 1276–1288.

    Article  CAS  Google Scholar 

  204. Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M., & Mahfouz, M. M. (2015). CRISPR/Cas9-mediated viral interference in plants. Genome Biology, 16(1), 238.

    Article  Google Scholar 

  205. Iqbal, Z., Sattar, M. N., & Shafiq, M. (2016). CRISPR/Cas9: A tool to circumscribe cotton leaf curl disease. Frontiers in Plant Science, 7, 475.

    Article  Google Scholar 

  206. Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L., & Landry, M. P. (2018). Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends in Biotechnology., 36(9), 882–897.

    Article  CAS  Google Scholar 

  207. Deng, H., Huang, W., & Zhang, Z. (2019). Nanotechnology based CRISPR/Cas9 system delivery for genome editing: Progress and prospect. Nano Research, 12, 2437.

    Article  CAS  Google Scholar 

Download references

Funding

The work presented received no funding.

Author information

Authors and Affiliations

Authors

Contributions

SM and ZA conceived the manuscript. SR and EM retrieved the literature and drafted the manuscript. SM, ZA, IA, and GR reviewed and drafted the manuscript.

Corresponding author

Correspondence to Imran Amin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, S.U., McCoy, E., Raza, G. et al. Improvement of Soybean; A Way Forward Transition from Genetic Engineering to New Plant Breeding Technologies. Mol Biotechnol 65, 162–180 (2023). https://doi.org/10.1007/s12033-022-00456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00456-6

Keywords

Navigation