Skip to main content
Log in

Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Tocopherols, with antioxidant properties, are synthesized by photosynthetic organisms and play important roles in human and animal nutrition. In soybean, γ-tocopherol, the biosynthetic precursor to α-tocopherol, is the predominant form found in the seed, whereas α-tocopherol is the most bioactive component. This suggests that the final step of the α-tocopherol biosynthetic pathway catalyzed by γ-tocopherol methyltransferase (γ-TMT) is limiting in soybean seed. Soybean oil is the major edible vegetable oil consumed, so manipulating the tocopherol biosynthetic pathway in soybean seed to convert tocopherols into more active α-tocopherol form could have significant health benefits. In order to increase the soybean seed α-tocopherol content, the γ-TMT gene isolated from Perilla frutescens was overexpressed in soybean using a seed-specific promoter. One transgenic plant was recovered and the progeny was analyzed for two generations. Our results demonstrated that the seed-specific expression of the P. frutescens γ-TMT gene resulted in a 10.4-fold increase in the α-tocopherol content and a 14.9-fold increase in the β-tocopherol content in T2 seed. Given the relative contributions of different tocopherols to vitamin E activity, the activity in T2 seed was calculated to be 4.8-fold higher than in wild-type seed. In addition, the data obtained on lipid peroxidation indicates that α-tocopherol may have a role in preventing oxidative damage to lipid components during seed storage and seed germination. The increase in the α-tocopherol content in the soybean seed could have a potential to significantly increase the dietary intake of vitamin E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE, Schuch W, Sheehy PJA, Wagner KH (2000) Vitamin E. J Sci Food Agric 80:913–938

    Article  CAS  Google Scholar 

  • Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155

    CAS  PubMed  Google Scholar 

  • Bunyan J, Mc HD, Green J, Marcinkiewicz S (1961) Biological potencies of epsilon- and zeta-1-tocopherol and 5-methyltocol. Br J Nutr 15:253–257

    Article  CAS  PubMed  Google Scholar 

  • Burton GW, Ingold KU (1986) Vitamin E: applications of the principles of physical organic chemistry to the exploration of its structure and function. Acc Chem Res 19:194–204

    Article  CAS  Google Scholar 

  • Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082–1087

    Article  CAS  PubMed  Google Scholar 

  • Cho EA, Lee CA, Kim YS, Baek SH, de los Reyes BG, Yun SJ (2005) Expression of gamma-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol Cells 19:16–22

    CAS  PubMed  Google Scholar 

  • Collakova E, DellaPenna D (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131:632–642

    Article  CAS  PubMed  Google Scholar 

  • Darnoko D, Cheryan M, Moros E, Jerrel J, Perkins EG (2000) Simultaneous HPLC analysis of palm carotenoids and tocopherols using a C-30 column and photodiode array detector. J Liquid Chrom Rel Technol 23:1873–1885

    Article  CAS  Google Scholar 

  • Demurin Y, Skoric D, Karlovic D (1996) Genetic variability of tocopherol composition in sunflower seeds as a basis of breeding for improved oil quality. Plant Breed 115:33–36

    Article  CAS  Google Scholar 

  • d'Harlingue A, Camara B (1985) Plastid enzymes of terpenoid biosynthesis. Purification and characterization of gamma-tocopherol methyltransferase from Capsicum chromoplasts. J Biol Chem 260:15200–15203

    PubMed  Google Scholar 

  • Drevon CA (1991) Absorption, transport and metabolism of vitamin E. Free Radic Res Commun 14:229–246

    CAS  PubMed  Google Scholar 

  • Eitenmiller RR (1997) Vitamin E content of fats and oils: nutritional implications. Food Technol 51:78–81

    CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    CAS  PubMed  Google Scholar 

  • Fryer MJ (1992) The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ 15:381–392

    Article  CAS  Google Scholar 

  • Fukuzawa K, Gebicki JM (1983) Oxidation of alpha-tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl, and superoxide free radicals. Arch Biochem Biophys 226:242–251

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Goffman FD, Böhme T (2001) Relationship between fatty acid profile and vitamin E content in maize hybrids (Zea mays L.). J Agric Food Chem 49:4990–4994

    Article  CAS  PubMed  Google Scholar 

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol 50:133–161

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hofius D, Sonnewald U (2003) Vitamin E biosynthesis: biochemistry meets cell biology. Trends Plant Sci 8:6–8

    Article  CAS  PubMed  Google Scholar 

  • Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Igarashi O, Arai H, Inoue K (1997) Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409:105–108

    Article  CAS  PubMed  Google Scholar 

  • Kagan RM, Clarke S (1994) Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310:417–427

    Article  CAS  PubMed  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Seo HY, Park TI, Baek SH, Shin WC, Kim HS, Kim JG, Choi YE, Yun SJ (2005) Enhanced biosynthesis of α-tocopherol in transgenic soybean by introducing γ-TMT gene. J Plant Biotechnol 7:1–7

    Google Scholar 

  • Koch M, Lemke R, Heise KP, Mock HP (2003) Characterization of gamma-tocopherol methyltransferases from Capsicum annuum L and Arabidopsis thaliana. Eur J Biochem 270:84–92

    Article  CAS  PubMed  Google Scholar 

  • Liebler DC (1993) The role of metabolism in the antioxidant function of vitamin E. Crit Rev Toxicol 23:147–169

    CAS  PubMed  Google Scholar 

  • Madhava Rao KV, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  CAS  PubMed  Google Scholar 

  • McKersie BD, Hoekstra FA, Krieg LC (1990) Differences in the susceptibility of plant membrane lipids to peroxidation. Biochim Biophys Acta 1030:119–126

    Article  CAS  PubMed  Google Scholar 

  • Munne-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neely WC, Martin JM, Barker SA (1988) Products and relative reaction rates of the oxidation of tocopherols with singlet molecular oxygen. Photochem Photobiol 48:423–428

    CAS  PubMed  Google Scholar 

  • Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC (1993) Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 328:1450–1456

    Article  CAS  PubMed  Google Scholar 

  • Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432

    Article  CAS  PubMed  Google Scholar 

  • Savidge B, Weiss JD, Wong YH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE (2002) Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 129:321–332

    Article  CAS  PubMed  Google Scholar 

  • Sheppard AJ, Pennington JA, Weihrauch JL (1993) Analysis and distribution of vitamin E in vegetable oils and foods. In: Packer L, Fuchs J (eds) Vitamin E in health and disease. Marcel Dekker, New York, pp 9–31

    Google Scholar 

  • Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    Article  CAS  PubMed  Google Scholar 

  • Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC (1993) Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 328:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Tan B (1989) Palm carotenoids, tocopherols and tocotrienols. J Am Oil Chem Soc 66:770–776

    CAS  Google Scholar 

  • Traber MG, Sies H (1996) Vitamin E in humans: demand and delivery. Annu Rev Nutr 16:321–347

    Article  CAS  PubMed  Google Scholar 

  • Trick HN, Dinkins RD, Santarem ER, Di R, Samoylov V, Meurer CA, Walker DR, Parrot WA, Finer JJ, Collins GB (1997) Recent advances in soybean transformation. Plant Tissue Cult Biotechnol 3:9–26

    Google Scholar 

  • USDA Foreign Agriculture Service (2003) Oil seeds: world market and trade. U.S. Department of Agriculture, Washington, DC, pp 1–26

    Google Scholar 

  • Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC, Norris SR, Last RL (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15:3007–3019

    Article  CAS  PubMed  Google Scholar 

  • Weiser H, Vecchi M, Schlachter M (1986) Stereoisomers of alpha-tocopheryl acetate. IV. USP units and alpha-tocopherol equivalents of all-rac-, 2-ambo- and RRR-alpha-tocopherol evaluated by simultaneous determination of resorption-gestation, myopathy and liver storage capacity in rats. Int J Vitam Nutr Res 56:45–56

    CAS  PubMed  Google Scholar 

  • Weiser H, Riss G, Kormann AW (1996) Biodiscrimination of the eight alpha-tocopherol stereoisomers results in preferential accumulation of the four 2R forms in tissues and plasma of rats. J Nutr 126:2539–2549

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kay McAllister for her technical assistance in soybean tissue culture and generation of transgenic plants. We also thank Jeanne Prather, Whitney Waters and Ray Stevens for technical and greenhouse support; Dr. Jack Widholm, University of Illinois, and Dr. Baochun Li, University of Kentucky, for manuscript review. This research is supported by funds provided by the United Soybean Board and Kentucky Soybean Promotion Board. This paper (no. 06-06-057) is published with the approval of the Director of the Kentucky Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn B. Collins.

Additional information

Communicated by G. C. Phillips

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavva, V.S., Kim, YH., Kagan, I.A. et al. Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep 26, 61–70 (2007). https://doi.org/10.1007/s00299-006-0218-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0218-2

Keywords

Navigation