Skip to main content
Log in

Identification of the Talaromyces cellulolyticus Gene Encoding an Extracellular Enzyme with β-galactosidase Activity and Testing it as a Reporter for Gene Expression Assays

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The filamentous fungus Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) is currently being intensively studied as a promising industrial producer of a number of secreted cellulolytic enzymes. In this study, the T. cellulolyticus gene lacA, which encodes a protein orthologous to the fungal extracellular β-galactosidases of family 35, was identified. The substitution of the lacA upstream region with a constitutive promoter demonstrated that the product of this gene is effectively secreted and possesses β-galactosidase activity. The optimal pH and temperature values for the hydrolysis of o-nitrophenyl-β-D-galactopyranoside by this enzyme were determined to be pH 4.5–5.5 and 50 °C, respectively. The negligible production of β-galactosidase activity by strains expressing lacA under native regulation raises the possibility of using lacA as a reporter gene. To test this hypothesis, the native promoter of lacA was replaced with the strong inducible promoter of the T. cellulolyticus cellobiohydrolase I gene. The cultivation of the resulting strain in various media showed that the β-galactosidase activity depends on cultivation conditions similar to the cellobiohydrolase activity. Thus, the suitability of lacA as a reporter for evaluating promoters with a wide range of expression profiles was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fujii, T., Hoshino, T., Inoue, H., & Yano, S. (2014). Taxonomic revision of the cellulose-degrading fungus Acremonium cellulolyticus nomen nudum to Talaromyces based on phylogenetic analysis. FEMS Microbiology Letters, 351, 32–41.

    Article  CAS  Google Scholar 

  2. Yamanobe, T., Mitsiushi, Y., & Takasaki, Y. (1987). Isolation of a cellulolytic enzyme producing microorganism, culture conditions and some properties of the enzymes. Agricultural and Biological Chemistry, 51, 65–74.

    CAS  Google Scholar 

  3. Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2009). Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. Journal of Bioscience and Bioengineering, 107, 256–261.

    Article  CAS  Google Scholar 

  4. Fujii, T., Iwata, K., Murakami, K., Yano, S., & Sawayama, S. (2012). Isolation of uracil auxotrophs of the fungus Acremonium cellulolyticus and the development of a transformation system with the pyrF gene. Bioscience, Biotechnology, and Biochemistry, 76, 245–249.

    Article  CAS  Google Scholar 

  5. Inoue, H., Fujii, T., Yoshimi, M., Taylor, L. E., 2nd., Decker, S. R., Kishishita, S., Nakabayashi, M., & Ishikawa, K. (2013). Construction of a starch-inducible homologous expression system to produce cellulolytic enzymes from Acremonium cellulolyticus. Journal of Industrial Microbiology and Biotechnology, 40, 823–830.

    Article  CAS  Google Scholar 

  6. Fujii, T., Koike, H., Sawayama, S., Yano, S., & Inoue, H. (2015). Draft genome sequence of Talaromyces cellulolyticus Strain Y-94, a source of lignocellulosic biomass-degrading enzymes. Genome Announcements, 3, e00014–e00015. https://doi.org/10.1128/genomeA.00014-15

    Article  PubMed  PubMed Central  Google Scholar 

  7. Inoue, H., Decker, S. R., Taylor, L. E., 2nd., Yano, S., & Sawayama, S. (2014). Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. Biotechnology for Biofuels, 7, 151.

    Article  Google Scholar 

  8. Ptitsyn, L. R., Yampolskaya, T. A., & Kutukova, E. A. (2017). Identification of core cellulolytic enzymes from Talaromyces cellulolyticus strain S6–25. FEBS J. 284, P.1.3–026.

  9. van den Brink, J., & de Vries, R. P. (2011). Fungal enzyme sets for plant polysaccharide degradation. Applied Microbiology and Biotechnology, 91, 1477–1492.

    Article  CAS  Google Scholar 

  10. Widmer, F., & Leuba, J. L. (1979). β-Galactosidase from Aspergillus niger. Separation and characterization of three multiple forms. European Journal of Biochemistry, 100, 559–567.

    Article  CAS  Google Scholar 

  11. Kumar, V., Ramakrishnan, S., Teeri, T. T., Knowles, J. K., & Hartley, B. S. (1992). Saccharomyces cerevisiae cells secreting an Aspergillus niger beta-galactosidase grow on whey permeate. Biotechnology (N. Y), 10, 82–85.

    CAS  Google Scholar 

  12. Niu, D., Tian, X., Mchunu, N., Jia, C., Singh, S., Liu, X., Prior, B., & Lu, F. (2017). Biochemical characterization of three Aspergillus niger β-galactosidases. Electronic Journal of Biotechnology., 27, 37–43.

    Article  CAS  Google Scholar 

  13. Rico-Díaz, A., Vizoso Vázquez, Á., Cerdán, M. E., Becerra, M., & Sanz-Aparicio, J. (2014). Crystallization and preliminary X-ray diffraction data of β-galactosidase from Aspergillus niger. Acta Crystallogr F Struct Biol Commun., 70, 1529–1531. https://doi.org/10.1107/S2053230X14019815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rico-Díaz, A., Ramírez-Escudero, M., Vizoso-Vázquez, Á., Cerdán, M. E., Becerra, M., & Sanz-Aparicio, J. (2017). Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages. FEBS Journal, 284, 1815–1829. https://doi.org/10.1111/febs.14083

    Article  CAS  PubMed  Google Scholar 

  15. Park, Y., Santi, M., & Pastore, G. (1979). Production and characterization of β-galactosidase from Aspergillus oryzae. Journal of Food Science, 44, 100–103.

    Article  CAS  Google Scholar 

  16. Maksimainen, M. M., Lampio, A., Mertanen, M., Turunen, O., & Rouvinen, J. (2013). The crystal structure of acidic β-galactosidase from Aspergillus oryzae. International Journal of Biological Macromolecules, 60, 109–115. https://doi.org/10.1016/j.ijbiomac.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  17. Nikolaev, I. V., Epishin, S. M., Zakharova, E. S., Kotenko, S. V., & Vinetskiĭ Iu. P. (1992). [Molecular cloning of the gene for secreted beta-galactosidase of the filamentous fungus Penicillium canescens]. [Article in Russian] Mol Biol (Mosk). 26, 869–875.

  18. Rojas, A. L., Nagem, R. A., Neustroev, K. N., Arand, M., Adamska, M., Eneyskaya, E. V., Kulminskaya, A. A., Garratt, R. C., Golubev, A. M., & Polikarpov, I. (2004). Crystal structures of β-galactosidase from Penicillium sp. and its complex with galactose. Journal of Molecular Biology, 343, 1281–1292. https://doi.org/10.1016/j.jmb.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  19. Adalberto, P. R., Massabni, A. C., Goulart, A. J., Contiero, J., Carmona, E. C., Cardello, L., & Monti, R. (2006). Production of β-galactosidase by Trichoderma reesei FTKO-39 in wheat bran: Partial purification of two isozymes. Applied Biochemistry and Biotechnology, 133, 163–170.

    Article  CAS  Google Scholar 

  20. Maksimainen, M., Hakulinen, N., Kallio, J. M., Timoharju, T., Turunen, O., & Rouvinen, J. (2011). Crystal structures of Trichoderma reesei β-galactosidase reveal conformational changes in the active site. Journal of Structural Biology, 174, 156–163. https://doi.org/10.1016/j.jsb.2010.11.024

    Article  CAS  PubMed  Google Scholar 

  21. Tatusov, R. L., Koonin, E. V., & Lipman, D. J. (1997). A genomic perspective on protein families. Science, 278, 631–637. https://doi.org/10.1126/science.278.5338.631

    Article  CAS  PubMed  Google Scholar 

  22. Yilmaz, N., Visagie, C. M., Houbraken, J., Frisvad, J. C., & Samson, R. A. (2014). Polyphasic taxonomy of the genus Talaromyces. Studies in Mycology, 78, 175–341. https://doi.org/10.1016/j.simyco.2014.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fairhead, C., Llorente, B., Denis, F., Soler, M., & Dujon, B. (1996). New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using ‘split-marker’ recombination. Yeast, 12, 1439–1457.

    Article  CAS  Google Scholar 

  24. Catlett, N. L., Lee, B., Yoder, O. C., & Turgeon, B. G. (2003). Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Reports. https://doi.org/10.4148/1941-4765.1150

    Article  Google Scholar 

  25. Nielsen, M. L., Albertsen, L., Lettier, G., Nielsen, J. B., & Mortensen, U. H. (2006). Efficient PCR-based gene targeting with a recyclable marker for Aspergillus nidulans. Fungal Genetics and Biology, 43, 54–64. https://doi.org/10.1016/j.fgb.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  26. Chernoglazov, V. M., Jafarova, A. N., & Klyosov, A. A. (1989). Continuous photometric determination of endo-1,4-beta-D-glucanase (cellulase) activity using 4-methylumbelliferyl-beta-D-cellobioside as a substrate. Analytical Biochemistry, 179, 186–189. https://doi.org/10.1016/0003-2697(89)90222-4

    Article  CAS  PubMed  Google Scholar 

  27. Collart, M. A., & Oliviero, S. (2001). Preparation of yeast RNA. Current Protocols in Molecular Biology. https://doi.org/10.1002/0471142727.mb1312s23

    Article  PubMed  Google Scholar 

  28. Smith, B. J. (1984). SDS polyacrylamide gel electrophoresis of proteins. Methods in Molecular Biology (Clifton, NJ), 1, 41–55. https://doi.org/10.1385/0-89603-062-8:41

    Article  CAS  Google Scholar 

  29. Lum, G., & Min, X. J. (2011). FunSecKB: the Fungal Secretome KnowledgeBase. Database, 2011, bar001. https://doi.org/10.1093/database/bar001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. von Heijne, G. (1985). Signal sequences. The limits of variation. Journal of Molecular Biology, 184, 99–105. https://doi.org/10.1016/0022-2836(85)90046-4

    Article  Google Scholar 

  31. Nielsen, H., Engelbrecht, J., Brunak, S., & von Heijne, G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein engineering, 10, 1–6. https://doi.org/10.1093/protein/10.1.1

    Article  CAS  PubMed  Google Scholar 

  32. Baker, D., Shiau, A. K., & Agard, D. A. (1993). The role of pro regions in protein folding. Current Opinion in Cell Biology, 5, 966–970. https://doi.org/10.1016/0955-0674(93)90078-5

    Article  CAS  PubMed  Google Scholar 

  33. Eder, J., & Fersht, A. R. (1995). Pro-sequence-assisted protein folding. Molecular microbiology, 16, 609–614. https://doi.org/10.1111/j.1365-2958.1995.tb02423.x

    Article  CAS  PubMed  Google Scholar 

  34. Mizuno, K., Nakamura, T., Ohshima, T., Tanaka, S., & Matsuo, H. (1989). Characterization of KEX2-encoded endopeptidase from yeast Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 159, 305–311.

    Article  CAS  Google Scholar 

  35. Brenner, C., & Fuller, R. S. (1992). Structural and enzymatic characterization of a purified prohormone-processing enzyme: Secreted, soluble Kex2 protease. Proceedings of the National Academy of Sciences of the United States of America., 89, 922–926.

    Article  CAS  Google Scholar 

  36. Bevan, A., Brenner, C., & Fuller, R. S. (1998). Quantitative assessment of enzyme specificity in vivo: P2 recognition by Kex2 protease defined in a genetic system. Proceedings of the National Academy of Sciences of the United States of America, 95, 10384–10389.

    Article  CAS  Google Scholar 

  37. Jalving, R., van de Vondervoort, P. J., Visser, J., & Schaap, P. J. (2000). Characterization of the kexin-like maturase of Aspergillus niger. Applied and Environment Microbiology, 66, 363–368.

    Article  CAS  Google Scholar 

  38. Fuglsang, C. C., Berka, R. M., Wahleithner, J. A., Kauppinen, S., Shuster, J. R., Rasmussen, G., Halkier, T., Dalboge, H., & Henrissat, B. (2000). Biochemical analysis of recombinant fungal mutanases. A new family of alpha1,3-glucanases with novel carbohydrate-binding domains. Journal of Biological Chemistry, 275, 2009–2018.

    Article  CAS  Google Scholar 

  39. O’Connell, S., & Walsh, G. (2008). Application relevant studies of fungal beta-galactosidases with potential application in the alleviation of lactose intolerance. Applied Biochemistry and Biotechnology, 149, 129–138.

    Article  Google Scholar 

  40. Cardoso, B. B., Silvério, S. C., Abrunhosa, L., Teixeira, J. A., & Rodrigues, L. R. (2017). β-galactosidase from Aspergillus lacticoffeatus: A promising biocatalyst for the synthesis of novel prebiotics. International Journal of Food Microbiology, 257, 67–74.

    Article  CAS  Google Scholar 

  41. Cruz, R., Cruz, V., Belote, J. N., Khenayfes, M. D., Dorta, C., & Oliveira, L. H. (1999). Properties of a new fungal β-galactosidase with potential application in the dairy industry. Revista de Microbiologia, 30, 265–271.

    Article  CAS  Google Scholar 

  42. v. d. Veen, P., Flipphi, M.J., Voragen, A.G. and Visser, J. (1993). Induction of extracellular arabinases on monomeric substrates in Aspergillus niger. Archives of Microbiology, 159, 66–71.

    Article  Google Scholar 

  43. Fernández-Espinar, M., Piñaga, F., Graaff, L., Visser, J., Ramón, D., & Vallés, S. (2004). Purification, characterization and regulation of the synthesis of an Aspergillus nidulans acidic xylanase. Applied Microbiology and Biotechnology., 42, 555–562.

    Article  Google Scholar 

  44. Kumar, S., & Ramón, D. (1996). Purification and regulation of the synthesis of a β-xylosidase from Aspergillus nidulans. FEMS Microbiology Letters., 135, 287–293.

    CAS  Google Scholar 

  45. de Vries, R. P., Visser, J., & de Graaff, L. H. (1999). CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Research in Microbiology, 150, 281–285.

    Article  Google Scholar 

  46. Rizzatti, A. C., Freitas, F., Bertolini, M., Peixoto-Nogueira, S. C., Terenzi, H., Jorge, J., & Polizeli, M. D. (2007). Regulation of xylanase in Aspergillus phoenicis: A physiological and molecular approach. Journal of Industrial Microbiology & Biotechnology., 35, 237–244.

    Article  Google Scholar 

  47. Nikolaev, I. V., & Vinetski, Y. P. (1998). L-Arabinose induces synthesis of secreted beta-galactosidase in the filamentous fungus Penicillium canescens. Biochemistry (Moscow), 63, 1294–1298.

    CAS  Google Scholar 

  48. Vavilova, E. A., & Vinetskiĭ, Iu. P. (2003). Induction of endo-1,4-beta-xylanase and beta-galactosidase in the original and recombinant strains of the fungus Penicillium canescens]. [Article in Russian. Prikladnaia Biokhimiia i Mikrobiologiia, 39, 167–172.

    CAS  PubMed  Google Scholar 

  49. Midoh, N., Sumida, N., Okakura, K., Murakami, T., & Yamanobe, T. (2009). New promoter for expressing protein products. Japanese patent JP4257759

  50. Hideno, A., Inoue, H., Fujiim, T., Yano, S., Tsukahara, K., Murakami, K., Yunokawa, H., & Sawayama, S. (2013). High-coverage gene expression profiling analysis of the cellulase-producing fungus Acremonium cellulolyticus cultured using different carbon sources. Applied Microbiology and Biotechnology, 97, 5483–5492. https://doi.org/10.1007/s00253-013-4689-0

    Article  CAS  PubMed  Google Scholar 

  51. Fujii, T., Inoue, H., & Ishikawa, K. (2013). Enhancing cellulase and hemicellulase production by genetic modification of the carbon catabolite repressor gene, creA, in Acremonium cellulolyticus. AMB Express, 3, 73. https://doi.org/10.1186/2191-0855-3-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pardy, K. (1994). Reporter enzymes for the study of promoter activity. Molecular Biotechnology, 2, 23–27. https://doi.org/10.1007/BF02789287

    Article  CAS  PubMed  Google Scholar 

  53. Kain, S. R., & Ganguly, S. (2001). Overview of genetic reporter systems. Current Protocols in Molecular Biology, 9(Unit9), 6. https://doi.org/10.1002/0471142727.mb0906s36

    Article  PubMed  Google Scholar 

  54. Ghim, C. M., Lee, S. K., Takayama, S., & Mitchell, R. J. (2010). The art of reporter proteins in science: Past, present and future applications. BMB Reports, 43, 451–460. https://doi.org/10.5483/bmbrep.2010.43.7.451

    Article  CAS  PubMed  Google Scholar 

  55. Saloheimo, A., Aro, N., Ilmén, M., & Penttilä, M. (2000). Isolation of the ace1 gene encoding a Cys(2)-His(2) transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. The Journal of biological chemistry, 275, 5817–5825. https://doi.org/10.1074/jbc.275.8.5817

    Article  CAS  PubMed  Google Scholar 

  56. Chulkin, A. M., Vavilova, E. A., & Benevolenskiĭ, S. V. (2011). The mutational analysis of carbon catabolite repression in filamentous fungus Penicillium canescens. Molekuliarnaia Biologiia, 45, 871–878. https://doi.org/10.1134/S0026893311050049

    Article  CAS  PubMed  Google Scholar 

  57. Honda, Y., Tanigawa, E., Tsukihara, T., Nguyen, D. X., Kawabe, H., Sakatoku, N., Watari, J., Sato, H., Yano, S., Tachiki, T., Irie, T., Watanabe, T., & Watanabe, T. (2019). Stable and transient transformation, and a promoter assay in the selective lignin-degrading fungus Ceriporiopsis subvermispora. AMB Express, 9, 92. https://doi.org/10.1186/s13568-019-0818-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Song, H. Y., Choi, D., Han, D. M., Kim, D. H., & Kim, J. M. (2018). A Novel Rapid Fungal Promoter Analysis System Using the Phosphopantetheinyl Transferase Gene, npgA, in Aspergillus nidulans. Mycobiology, 46, 429–439. https://doi.org/10.1080/12298093.2018.1548806

    Article  PubMed  PubMed Central  Google Scholar 

  59. Miller, J. H. (1972). Experiments in molecular genetics. ColdSpring Harbor Laboratory Press.

    Google Scholar 

  60. Bitter, G. A., Chang, K. K., & Egan, K. M. (1991). A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter. Molecular & General Genetics: MGG, 231, 22–32. https://doi.org/10.1007/BF00293817

    Article  CAS  PubMed  Google Scholar 

  61. Flagfeldt, D. B., Siewers, V., Huang, L., & Nielsen, J. (2009). Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast, 26, 545–551. https://doi.org/10.1002/yea.1705

    Article  CAS  PubMed  Google Scholar 

  62. Nevoigt, E., Kohnke, J., Fischer, C. R., Alper, H., Stahl, U., & Stephanopoulos, G. (2006). Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 72, 5266–5273. https://doi.org/10.1128/AEM.00530-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Natalia P. Zakataeva (Ajinomoto-Genetika Research Institute, 1st Dorozhny proezd, 1-1, Moscow 117545, Russia) for critical reading of the manuscript and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod A. Serebrianyi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 66 kb)

Supplementary file2 (PPTX 2590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orleneva, A.P., Serebrianyi, V.A., Kutukova, E.A. et al. Identification of the Talaromyces cellulolyticus Gene Encoding an Extracellular Enzyme with β-galactosidase Activity and Testing it as a Reporter for Gene Expression Assays. Mol Biotechnol 64, 637–649 (2022). https://doi.org/10.1007/s12033-022-00453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00453-9

Keywords

Navigation