Skip to main content

Advertisement

Log in

High-coverage gene expression profiling analysis of the cellulase-producing fungus Acremonium cellulolyticus cultured using different carbon sources

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The gene expression of a cellulase-producing fungus, Acremonium cellulolyticus, was investigated after culturing with three different carbon sources: glycerol, lactose, and Solka-Floc powdered cellulose (SF). High-coverage gene expression profiling (HiCEP) analysis, a method requiring no prior sequence knowledge, was used to screen genes upregulated at the early stage of cellulase production. SF was used as a strong inducer of cellulase production, lactose was used as an inducer of the expression of cellulase genes at the early stage of the culture, and glycerol was used as a negative control. Approximately 15,000 transcript-derived fragments (TDFs) were detected in each sample prepared from the culture grown for 16 h. Based on the expression profiles of the cultured cells, 36 fragments upregulated in both the SF and lactose cultures were selected and sequenced. The deduced gene products of 31 TDFs were likely related to biomass degradation, sugar metabolism, transcriptional regulation, protein modification and metabolism, cell wall recycling, fatty acid and polyketide biosynthesis, and other functions. Quantitative real-time reverse-transcriptase polymerase chain reaction analysis verified that almost all of the transcripts obtained by HiCEP analysis were upregulated in the SF and lactose cultures grown for 18 h. Some of the TDFs in the SF culture were further upregulated over the course of 72 h. The gene products from these TDFs would provide insight into improving the cellulase productivity of A. cellulolyticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Brown DW, Adams TH, Keller NP (1996) Aspergillus has distinct fatty acid synthase for primary and secondary metabolism. Proc Natl Acad Sci USA 93:14873–14877

    Article  CAS  Google Scholar 

  • Chambergo FS, Bonaccorsi ED, Ferreira AJ, Ramos AS, Ferreira JR Jr, Abrahao-Neto J, Farah JP, El-Dorry H (2002) Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277:13983–13988

    Article  CAS  Google Scholar 

  • Domingues FC, Queiroz JA, Cabral JMS, Fonseca LP (2000) The influence of culture conditions on mycerial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme Microbiol Technol 26:394–401

    Article  CAS  Google Scholar 

  • Fang X, Yano S, Inoue H, Sawayama S (2008) Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus. J Biosci Bioeng 106:115–120

    Article  CAS  Google Scholar 

  • Fang X, Yano S, Inoue H, Sawayama S (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 107:256–261

    Article  CAS  Google Scholar 

  • Fekete E, Seiboth B, Kubicek CP, Szentirmai A, Karaffa L (2008) Lack of aldose 1-epimerase in Hypocrea jecorina (anamorph Trichoderma reesei): a key to cellulase gene expression on lactose. Proc Natl Acad Sci USA 105:7141–7146

    Article  CAS  Google Scholar 

  • Fujii T, Murakami K, Sawayama S (2010) Cellulase hyperproducing mutants derived from the fungus Trichoderma reesei QM9414 produced large amounts of cellulase at the enzymatic and transcriptional levels. Biosci Biotechnol Biochem 74:419–422

    Article  CAS  Google Scholar 

  • Fujii T, Iwata K, Murakami K, Yano S, Sawayama S (2012) Isolation of uracil auxotrophs of the fungus Acremonium cellulolyticus and the development of a transformation system with the pyrF gene. Biosci Biotechnol Biochem 76:245–249

    Article  CAS  Google Scholar 

  • Fukumura R, Takahashi H, Saito T, Tsutsumi Y, Fujimori A, Sato S, Tatsumi K, Araki R, Abe M (2003) A sensitive transcriptome analysis method that can detect unknown transcripts. Nucl Acids Res 31:e94

    Article  Google Scholar 

  • Fuma S, Nakamori T, Ishii N, Kubota Y, Yoshida S, Fujimori A (2009) Genome-wide gene expression profiling in γ-irradiated green alga, Pseudokirchneriella subcapitata, by HiCEP. Bull Environ Contam Toxicol 83:301–306

    Article  CAS  Google Scholar 

  • Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425

    Article  CAS  Google Scholar 

  • Ike M, Park J, Tabuse M, Tokuyasu K (2010) Cellulase production on glucose-based media by the UV-irradiated mutants of Trichoderma reesei. Appl Microbiol Biotechnol 87:2059–2066

    Article  CAS  Google Scholar 

  • Ikeda Y, Hayashi H, Okuda N, Park EY (2007) Efficient cellulase production by the filamentous fungus Acremonium cellulolyticus. Biotechnol Prog 233:333–338

    Article  Google Scholar 

  • Inan M, Aryasomayajula D, Sinha J, Meagher M (2006) Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol Bioeng 93:771–778

    Article  CAS  Google Scholar 

  • Kanna M, Yano S, Inoue H, Fujii T, Sawayama S (2011) Enhancement of β-xylosidase productivity in cellulase producing fungus Acremonium cellulolyticus. AMB Express 1:15

    Article  Google Scholar 

  • Karimi K, Emtiazi G, Taherzadeh MJ (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb Technol 40:138–144

    Article  CAS  Google Scholar 

  • Kawamori M, Morikawa Y, Takasawa S (1986a) Induction and production of cellulases by l-sorbose in Trichoderma reesei. Appl Microbiol Biotechnol 24:449–453

    CAS  Google Scholar 

  • Kawamori M, Morikawa Y, Ado Y, Takasawa S (1986b) Production of cellulases from alkali-treated bagasse in Trichoderma reesei. Appl Microbiol Biotechnol 24:454–458

    CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2:19

    Article  Google Scholar 

  • Kuhls K, Lieckfeldt E, Samuels GJ, Kovacs W, Meyer W, Petrini O, Gams W, Börner T, Kubicek CP (1996) Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci USA 93:7755–7760

    Article  CAS  Google Scholar 

  • Le-Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, Martin J, Druzhinina IS, Mathis H, Monot F, Seiboth B, Cherry B, Rey M, Berka R, Kubicek CP, Baker SE, Margeot A (2009) Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci USA 106:16151–16156

    Article  CAS  Google Scholar 

  • Limon MC, Pakula T, Saloheimo M, Penttilä M (2011) The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30. Microb Cell Fact 10:40

    Article  CAS  Google Scholar 

  • Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73:269–278

    CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicel CP, Han CS, Ho I, Larrodo LF, Leon ALD, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barbote R, Nelson DS, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  CAS  Google Scholar 

  • Midoh N, Sumida N, Okakura K, Murakami T, Yamanobe T (2009) New promoter for expressing protein products. Japanese patent JP4257759

  • Morikawa Y, Kawamori M, Ado Y, Shinsha Y, Oda F, Takasawa S (1985) Improvement of cellulase production in Trichoderma reesei. Agric Biol Chem 49:1869–1871

    Article  CAS  Google Scholar 

  • Nakamori T, Fujimori A, Kinoshita K, Ban-nai T, Kubota Y, Yoshida S (2008) Application of HiCEP to screening of radiation stress-responsive genes in the soil microarthropod Folsomia candida (Collembola). Environ Sci Tech 42:6997–7002

    Article  CAS  Google Scholar 

  • Nakari-Setälä T, Penttilä M (1995) Production of Trichoderma reesei cellulases on glucose-containing media. Appl Environ Microbiol 61:3650–3655

    Google Scholar 

  • Nevalainen H, Suominen P, Taimisto K (1994) On the safety of Trichoderma reesei. J Biotechnol 37:193–200

    Article  CAS  Google Scholar 

  • Saloheimo M, Lund M, Penttilä ME (1999) The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol Gen Genet 262:35–45

    Article  CAS  Google Scholar 

  • Schmoll M, Zeilinger S, Mach RL, Kubick CP (2004) Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet Biol 41:877–887

    Article  CAS  Google Scholar 

  • Slabas AR, Chase D, Nishida I, Murata N, Sidebottom C, Safford R, Sheldon PS, Kekwick RGO, Hardie DG, Mackintosh RW (1992) Molecular cloning of higher-plant 3-oxoacyl-(acyl carrier protein) reductase. Biochem J 283:321–326

    CAS  Google Scholar 

  • Suurnäkki A, Tenkanen M, Siika-Aho M, Niku-Paavola ML, Viikari L, Buchert J (2000) Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp. Cellulose 7:189–209

    Article  Google Scholar 

  • Todd RB, Andrianopoulos A (1997) Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 21:388–405

    Article  CAS  Google Scholar 

  • Vitikainen M, Arvas M, Pakula T, Oja M, Penttilä M, Saloheimo M (2010) Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties. BMC Genomics 11:441

    Article  Google Scholar 

  • Yamanobe T, Mitsuishi Y, Takasaki Y (1987) Isolation of cellulolytic enzyme producing microorganism, culture conditions and some properties of the enzymes. Agric Biol Chem 51:65–74

    Article  CAS  Google Scholar 

  • Yuyama I, Watanabe T, Takei Y (2011) Profiling differential gene expression of symbiotic and aposymbiotic corals using a high coverage gene expression profiling (HiCEP) analysis. Mar Biotechnol 13:32–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Regional Biomass Energy Project, Ministry of Agriculture, Forestry, and Fisheries, Japan. We thank Dr. Akira Iwase (RIKEN Plant Science Center, Yokohama), Dr. Kinya Sakanishi, Dr. Tomoaki Minowa, Dr. Shinji Fujimoto, Dr. Takashi Yanagida (Biomass Technology Research Center, National Institute of Advanced Industrial Science and Technology), Dr. Seiya Watanabe, and Dr. Yuzuru Tozawa (Ehime University) for their useful comments and valuable discussion.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hideno, A., Inoue, H., Fujii, T. et al. High-coverage gene expression profiling analysis of the cellulase-producing fungus Acremonium cellulolyticus cultured using different carbon sources. Appl Microbiol Biotechnol 97, 5483–5492 (2013). https://doi.org/10.1007/s00253-013-4689-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4689-0

Keywords

Navigation