Skip to main content

Advertisement

Log in

Age-Related Differences and Relationships Between Elements in Human Amygdala and Other Limbic System or Basal Ganglia

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To elucidate the compositional changes of the amygdala with aging, the authors investigated age-related differences of elements in human amygdalae. In addition, the relationships between the amygdala and other brain regions were investigated from a viewpoint of elements. After ordinary dissections at Nara Medical University were finished, the amygdalae were removed from the cerebra of the subjects who consisted of 22 men and 23 women, ranging in age from 70 to 101 years. In addition, the hippocampus, dentate gyrus, mammillary body of the limbic system and the caudate nucleus, putamen, and globus pallidus of the basal ganglia were also removed from the identical cerebra. After the brain samples were incinerated with nitric acid and perchloric acid, the element contents were determined by inductively coupled plasma-atomic emission spectrometry. It was found that both the Ca and Mg contents increased significantly in the amygdalae with aging, but the other five element contents (P, S, Zn, Fe, and Na) did not change significantly in the amygdalae with aging. Regarding the relationships among elements, very significant or significant direct correlations were found among the Ca, P, and Mg contents in the amygdalae. To explore the relationships between the amygdala and either other limbic system or basal ganglia, the correlations between seven elements of the amygdala and hippocampus, dentate gyrus, or mammillary body, and between those of the amygdala and caudate nucleus, putamen, or globus pallidus which derived from the identical cerebra, were analyzed with Pearson’s correlation. It was found that regarding the four elements of Ca, P, Mg, and Fe, a close relationship existed between the amygdala and hippocampus, globus pallidus, or mammillary body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tohno S, Azuma C, Ongkana N et al (2008) Age-related changes of elements in human corpus callosum and relationships among these elements. Biol Trace Elem Res 121:124–133

    Article  PubMed  CAS  Google Scholar 

  2. Ongkana N, Tohno S, Tohno Y et al (2010) Age-related changes of elements in the anterior commissures and the relationships among their elements. Biol Trace Elem Res 135:86–97

    Article  PubMed  CAS  Google Scholar 

  3. Tohno Y, Tohno S, Ongkana N et al (2010) Age-related changes of elements and relationships among elements in human hippocampus, dentate gyrus, and fornix. Biol Trace Elem Res 138:42–52

    Article  PubMed  CAS  Google Scholar 

  4. Ongkana N, Zhao X-Z, Tohno S et al (2007) High accumulation of calcium and phosphorus in the pineal bodies with aging. Biol Trace Elem Res 119:120–127

    Article  PubMed  CAS  Google Scholar 

  5. Ke L, Tohno S, Tohno Y et al (2008) Age-related changes of elements in human olfactory bulbs and tracts and relationships among their contents. Biol Trace Elem Res 126:65–75

    Article  PubMed  CAS  Google Scholar 

  6. Suwannahoy P, Tohno S, Mahakkanukrauh P et al (2010) Calcium increase in the mammillary bodies with aging. Biol Trace Elem Res 135:56–66

    Article  PubMed  CAS  Google Scholar 

  7. Tohno S, Ishizaki T, Shida Y et al (2011) Element distribution in visual system, the optic chiasma, lateral geniculate body, and superior colliculus. Biol Trace Elem Res 142:335–349

    Article  PubMed  CAS  Google Scholar 

  8. Tohno Y, Tohno S, Azuma C et al (2012) Mineral composition of and the relationships between them of human basal ganglia in very old age. Biol Trace Elem Res 151:18–29

    Article  PubMed  Google Scholar 

  9. Tohno S, Ongkana N, Ke L et al (2010) Gender differences in elements of human anterior commissure and olfactory bulb and tract. Biol Trace Elem Res 137:40–48

    Article  PubMed  CAS  Google Scholar 

  10. Tohno Y, Tohno S, Mahakkanukrauh et al (2011) Gender differences in elements of the brain rgions. In: Braissant O, Wakamatsu H, Kuo-Kang I et al (eds) Recent researches in modern medicine. WSEAS, Cambridge, pp 445–450

    Google Scholar 

  11. Brierly B, Shaw P, David AS (2002) The human amygdala: a systematic review and meta-analysis of volumetric magnetic resonance imaging. Brain Res Rev 39:84–105

    Article  Google Scholar 

  12. Brabec J, Rulseh A, Hoyt B et al (2010) Volumetry of the human amygdala—an anatomical study. Psychiatry Res Neuroimaging 182:67–72

    Article  Google Scholar 

  13. Mouiha A, Ducheone S (2011) Multi-decade hippocampal and amygdala volume analysis: equal variability and limited age effect. Neurosci Lett 499:93–98

    Article  PubMed  CAS  Google Scholar 

  14. Kim HJ, Kim N, Kim S et al (2012) Sex differences in amygdala subregions: evidence from subregional shape analysis. NeuroImage 60:2054–2061

    Article  PubMed  Google Scholar 

  15. Marsh L, Suddath RL, Higgins N et al (1994) Medial temporal lobe structures in schizophrenia: relationship of size to duration of illness. Schizophr Res 11:225–238

    Article  PubMed  CAS  Google Scholar 

  16. Soininen HS, Partanen K, Pitkanen A et al (1994) Volumetric MRI analysis of amygdala and the hippocampus in subjects with age-associated memory impairment: correlation to visual and verbal memory. Neurology 44:1660–1668

    Article  PubMed  CAS  Google Scholar 

  17. Pruessner JC, Collins DL, Pruessner M et al (2001) Age and gender predict volume decline in the anterior and posterior hippocampus in early adulthood. J Neurosci 21:194–200

    PubMed  CAS  Google Scholar 

  18. Tohno Y, Tohno S, Matsumoto H et al (1985) A trial of introducing soft X-ray apparatus into dissection practice for students. J Nara Med Assoc 36:365–370

    Google Scholar 

  19. Tohno Y, Tohno S, Minami T et al (1996) Age-related changes of mineral contents in the human thoracic aorta and in the human cerebral artery. Biol Trace Elem Res 54:23–31

    Article  PubMed  CAS  Google Scholar 

  20. Tohno Y, Tohno S, Moriwake Y et al (2001) Accumulation of calcium and phosphorus accompanied by increase of magnesium and decrease of sulfur in human arteries. Biol Trace Elem Res 82:9–19

    Article  PubMed  CAS  Google Scholar 

  21. Tohno S, Tohno Y, Moriwake Y et al (2001) Quantitative changes of calcium, phosphorus, and magnesium in common iliac arteries with aging. Biol Trace Elem Res 84:57–66

    Article  PubMed  CAS  Google Scholar 

  22. Tohno S, Tohno Y, Minami T et al (2002) Elements of calcified sites in human thoracic aorta. Biol Trace Elem Res 86:23–30

    Article  PubMed  CAS  Google Scholar 

  23. Bigi A, Compostella L, Fichera AM et al (1988) Structural and chemical characterization of inorganic deposits in calcified human mitral valve. J Inorgan Biochem 34:75–82

    Article  CAS  Google Scholar 

  24. Tsuchiya K, Nakayama H, Iritani S et al (2002) Distribution of basal ganglia lesions in diffuse neurofibrillary tangles with calcification: a clinicopathological study of five autopsy cases. Acta Neuropathol 103:555–564

    Article  PubMed  CAS  Google Scholar 

  25. Appenzeller S, Chaloult E, Velho P et al (2006) Amygdalae calcifications associated with disease during lipoid proteinosis. J Neuroimaging 16:154–156

    Article  PubMed  Google Scholar 

  26. Goncalves FG, de Melo MB, de L Matos V et al (2010) Amygdalae and striatum calcification in lipoid proteinosis. Am J Neuroradiol 31: 88–90

  27. Hamada T (2002) Lipoid proteinosis. Clin Exp Dermatol 27:624–629

    Article  PubMed  CAS  Google Scholar 

  28. Hamada T, McLean WH, Ramsay M et al (2002) Lipoid proteinosis maps to 1q21 and is caused by mutations in the extracellular matrix protein 1 gene (ECM1). Hum Mol Genet 11:833–840

    Article  PubMed  CAS  Google Scholar 

  29. Wu HY, Lynch DR (2006) Calpain and synaptic function. Mol Neurobiol 33:215–236

    Article  PubMed  Google Scholar 

  30. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337

    Article  PubMed  CAS  Google Scholar 

  31. Raza M, Deshpande LS, Blair RE et al (2007) Aging is associated with elevated intracellular calcium levels and altered calcium homeostatic mechanisms in hippocampal neurons. Neurosci Lett 418:77–81

    Article  PubMed  CAS  Google Scholar 

  32. Hajieva P, Kuhlmann C, Luhmann HJ et al (2009) Impaired calcium homeostasis in aged hippocampal neurons. Neurosci Lett 451:119–123

    Article  PubMed  CAS  Google Scholar 

  33. Hubbard JL (1961) The effect of calcium and magnesium on the spontaneous release of transmitter from mammalian motor nerve endings. J Physiol 159:507–517

    PubMed  CAS  Google Scholar 

  34. Okada K (1973) Effect of calcium and magnesium on spontaneous transmitter release accelerated by raise potassium. Brain Res 53:237–242

    Article  PubMed  CAS  Google Scholar 

  35. Muller RU, Finkelstein A (1974) The electrostatic basis of Mg2+ inhibition of transmitter release. Proc Natl Acad Sci USA 71:923–926

    Article  PubMed  CAS  Google Scholar 

  36. Kuno M, Takahashi T (1986) Effects of calcium and magnesium on transmitter release at Ia synapses of rat spinal motoneurons in vitro. J Physiol 376:543–553

    PubMed  CAS  Google Scholar 

  37. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependence blockage by Mg2+ of NMDA responses in spinal cord neurons. Nature 309:261–263

    Article  PubMed  CAS  Google Scholar 

  38. Nowak L, Bregestowski P, Ascher P et al (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307:462–465

    Article  PubMed  CAS  Google Scholar 

  39. Li-Smerin Y, Johnson JW (1996) Kinetics of the block by intracellular Mg2+ of the NMDA-activated channel in cultured rat neurons. J Physiol 491:121–135

    PubMed  CAS  Google Scholar 

  40. Li-Smerin Y, Johnson JW (1996) Effects of intracellular Mg2+ on channel gating and steady-state response of the NMDA receptor in cultured rat neurons. J Physiol 491:137–150

    PubMed  CAS  Google Scholar 

  41. Billard JM (2006) Ageing, hippocampal synaptic activity and magnesium. Magn Res 19:199–215

    CAS  Google Scholar 

  42. Dribben WH, Creeley CE, Wang HH et al (2009) High dose magnesium sulfate exposure induces apoptotic cell death in the developing neonatal mouse brain. Neonatol 96:23–32

    Article  CAS  Google Scholar 

  43. Tohno Y, Tohno S, Ongkana N et al (2011) Relationships among the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure from a viewpoint of elements. Biol Trace Elem Res 140:35–52

    Article  PubMed  CAS  Google Scholar 

  44. Oster O, Dahm M, Oelert H et al (1989) Concentrations of some trace elements (Se, Zn, Cu, Fe, Mg, K) in blood and heart tissue of patients with coronary heart disease. Clin Chem 35:851–856

    PubMed  CAS  Google Scholar 

  45. Connor JR, Menzies SL, St Martin SM et al (1990) Cellular distribution of transferrin, ferritin, and iron in the human brain. J Neurosci Res 27:595–611

    Article  PubMed  CAS  Google Scholar 

  46. Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17:83–93

    Article  PubMed  CAS  Google Scholar 

  47. Benarroch EE (2009) Brain iron homeostasis and neurodegenerative disease. Neurology 72:1436–1440

    Article  PubMed  Google Scholar 

  48. Todorich B, Pasquini JM, Garcia CI et al (2009) Oligodendrocytes and myelination: the role of iron. Glia 57:467–478

    Article  PubMed  Google Scholar 

  49. Schipper HM (2012) Neurodegeneration with brain iron accumulation clinical syndromes and neuroimaging. Biochim Biophys Acta 1822:350–360

    Article  PubMed  CAS  Google Scholar 

  50. Cass WA, Grondin R, Andersen AH et al (2007) Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys. Neurobiol Aging 28:258–271

    Article  PubMed  CAS  Google Scholar 

  51. LeDoux JE (2007) The amygdala. Curr Biol 17:R868–R874

    Article  PubMed  CAS  Google Scholar 

  52. Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21:323–331

    Article  PubMed  CAS  Google Scholar 

  53. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  PubMed  CAS  Google Scholar 

  54. Aggleton JP (2000) The amygdala: a functional analysis. Oxford University, Oxford

    Google Scholar 

  55. Amunts K, Kedo O, Kindler M et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352

    Article  CAS  Google Scholar 

  56. Lopes da Silva FH, Witter MP, Boeijinga PH et al (1990) Anatomical organization and physiology of the limbic cortex. Physiol Rev 70:453–511

    PubMed  CAS  Google Scholar 

  57. Mckernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390:607–611

    Article  PubMed  CAS  Google Scholar 

  58. Rogan MT, Staubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390:604–607

    Article  PubMed  CAS  Google Scholar 

  59. Pitkanen A, Jolkkonen E, Kemppainen S (2000) Anatomic heterogeneity of the rat amygdaloid complex. Folia Morphol 59:1–23

    CAS  Google Scholar 

  60. Sah P, Faber ESL, Lopez de Armentia M et al (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834

    PubMed  CAS  Google Scholar 

  61. Carpenter MB (1991) Core text of neuroanatomy, 4th edn. Williams & Wilkins, Baltimore, pp 361–386

    Google Scholar 

  62. Martin J (1989) Neuroanatomy: text and atlas. Elsevier, New York, pp 375–395

    Google Scholar 

  63. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 38:725–743

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Tohno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohno, Y., Tohno, S., Azuma, C. et al. Age-Related Differences and Relationships Between Elements in Human Amygdala and Other Limbic System or Basal Ganglia. Biol Trace Elem Res 152, 161–173 (2013). https://doi.org/10.1007/s12011-013-9607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9607-x

Keywords

Navigation