Skip to main content
Log in

Element Distribution in Visual System, the Optic Chiasma, Lateral Geniculate Body, and Superior Colliculus

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To elucidate compositional changes of the visual system with aging, the authors investigated age-related changes of elements in the optic chiasma, lateral geniculate body, and superior colliculus, relationships among their elements, relationships among their brain regions from a viewpoint of elements, and gender differences in their elements by direct chemical analysis. After ordinary dissection at Nara Medical University was finished, the optic chiasmas, lateral geniculate bodies, and superior colliculi were resected from identical cerebra of the subjects. The subjects consisted of 14 men and 10 women, ranging in age from 75 to 96 years (average age = 85.6 ± 5.9 years). After ashing with nitric acid and perchloric acid, element contents were determined by inductively coupled plasma-atomic emission spectrometry. As the result, the average content of P was significantly higher in the optic chiasma and superior colliculus compared with the lateral geniculate body. Regarding age-related changes of elements, no significant changes with aging were found in seven elements of the optic chiasma, lateral geniculate body, and superior colliculus in the subjects more than 75 years of age. The findings that with regard to the relationships among elements, there were extremely significant direct correlations between Ca and Zn contents and significant inverse correlations between Mg and Na contents were obtained in common in all of the optic chiasma, lateral geniculate body, and superior colliculus. It was examined whether there were significant correlations among the optic chiasma, lateral geniculate body, and superior colliculus in the seven elements and the following results were obtained: There were significant direct correlations between the optic chiasma and lateral geniculate body in both the P and Mg contents; there was a significant direct correlation between the optic chiasma and superior colliculus in the Fe content; and a significant direct correlation was found between the lateral geniculate body and superior colliculus in the Mg content. Regarding the gender differences in elements, it was found that both the Ca and Zn contents of the lateral geniculate body were significantly higher in women than in men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tohno S, Azuma C, Ongkana N et al (2008) Age-related changes of elements in human corpus callosum and relationships among these elements. Biol Trace Element Res 121:124–133

    Article  CAS  Google Scholar 

  2. Ongkana N, Tohno S, Tohno Y et al (2010) Age-related changes of elements in the anterior commissures and the relationships among their elements. Biol Trace Element Res 135:86–97

    Article  CAS  Google Scholar 

  3. Tohno Y, Tohno S, Ongkana N et al (2010) Age-related changes of elements and relationships among elements in human hippocampus, dentate gyrus, and fornix. Biol Trace Element Res. doi:10.1007/s12011-009-8605-5

    Google Scholar 

  4. Ongkana N, Zhao X-Z, Tohno S et al (2007) High accumulation of calcium and phosphorus in the pineal bodies with aging. Biol Trace Element Res 119:120–127

    Article  CAS  Google Scholar 

  5. Ke L, Tohno S, Tohno Y et al (2008) Age-related changes of elements in human olfactory bulbs and tracts and relationships among their contents. Biol Trace Element Res 126:65–75

    Article  CAS  Google Scholar 

  6. Suwannahoy P, Tohno S, Mahakkanukrauh P et al (2009) Calcium increase in the mammillary bodies with aging. Biol Trace Element Res 135:56–66

    Article  Google Scholar 

  7. Sandell JH, Peters A (2001) Effects of age on nerve fibers in the rhesus monkey optic nerve. J Comp Neurol 429:541–553

    Article  PubMed  CAS  Google Scholar 

  8. Sandell JH, Peters A (2002) Effects of age on the glial cells in the rhesus monkey optic nerve. J Comp Neurol 445:13–28

    Article  PubMed  Google Scholar 

  9. Cavallotti C, Pacella E, Pescosolido N et al (2002) Age-related changes in the human optic nerve. Can J Ophthalmol 37:389–394

    PubMed  Google Scholar 

  10. Cavallotti C, Cavallotti D, Pescosolido N et al (2003) Age-related changes in rat optic nerve: morphological studies. Anat Histol Embryol 32:12–16

    Article  PubMed  CAS  Google Scholar 

  11. Satorre J, Cano J, Reinoso-Suarez F (1985) Stability of the neuronal population of the dorsal lateral geniculate nucleus (dLGN) of aged rats. Brain Res 339:375–377

    Article  PubMed  CAS  Google Scholar 

  12. Diaz F, Villena A, Gonzalez P et al (1999) Stereological age-related changes in neurons of the dorsal lateral geniculate nucleus. Anat Rec 255:396–400

    Article  PubMed  CAS  Google Scholar 

  13. Ahmad A, Spear PD (1993) Effects of aging on the size, density and number of rhesus monkey lateral geniculate neurons. J Comp Neurol 334:631–643

    Article  PubMed  CAS  Google Scholar 

  14. De la Roza C, Cano J, Satorre J et al (1986) A morphologic analysis of neuron and neuropil in the dorsal lateral geniculate nucleus of aged rats. Mech Ageing Dev 34:233–248

    Article  PubMed  Google Scholar 

  15. Cano J, De la Roza C, Reinoso-Suarez F (1989) Cytoplasmic organelles in neurons of the dorsal lateral geniculate nucleus of the rats. Acta Anat 134:227–231

    Article  PubMed  CAS  Google Scholar 

  16. Vidal L, Ruiz C, Villena A et al (2004) Quantitative age-related changes in dorsal lateral geniculate nucleus relay neurons of the rat. Neurosci Res 48:387–396

    Article  PubMed  Google Scholar 

  17. Diaz F, Moreno P, Villena A et al (2003) Effects of aging on neurons and glial cells from the superficial layers of the superior colliculus in rats. Microsc Res Tech 62:431–438

    Article  PubMed  Google Scholar 

  18. Doraiswamy PM, Na C, Husain MM et al (1992) Morphometric changes of the human midbrain with normal aging: MR and stereologic findings. Am J Neuroradiol 13:383–386

    PubMed  CAS  Google Scholar 

  19. Tohno Y, Tohno S, Matsumoto H et al (1985) A trial of introducing soft X-ray apparatus into dissection practice for students. J Nara Med Assoc 36:365–370

    Google Scholar 

  20. Tohno Y, Tohno S, Minami T et al (1996) Age-related changes of mineral contents in human thoracic aorta and in the cerebral artery. Biol Trace Element Res 54:23–31

    Article  CAS  Google Scholar 

  21. Davison AN, Dobbing J (1966) Myelination as a vulnerable period in brain development. Br Med Bull 22:40–44

    PubMed  CAS  Google Scholar 

  22. Davison AN, Cuzner M, Banik NL et al (1966) Myelinogenesis in the rat brain. Nature 212:1373–1374

    Article  PubMed  CAS  Google Scholar 

  23. Morell P, Norton WT (1980) Myelin. Sci Am 242:88–119

    Article  PubMed  CAS  Google Scholar 

  24. LoPachin RM, Lowery J, Eichbery J et al (1988) Distribution of elements in rat peripheral axons and nerve cell bodies determined by X-ray microprobe analysis. J Neurochem 51:764–775

    Article  PubMed  CAS  Google Scholar 

  25. LoPachin RM, LoPachin VR, Saubermann AJ (1990) Effects of axotomy on distribution and concentration of elements in rat sciatic nerve. J Neurochem 54:320–332

    Article  PubMed  CAS  Google Scholar 

  26. Utsumi M, Tohno S, Tohno Y et al (2004) Age-related changes of elements with their relationships in human cranial and spinal nerves. Biol Trace Element Res 98:229–252

    Article  CAS  Google Scholar 

  27. Double KL, Dedov VN, Fedorow H et al (2008) The comparative biology of neuromelanin and lipofuscin in human brain. Cell Mol Life Sci 65:1669–1682

    Article  PubMed  CAS  Google Scholar 

  28. Jung T, Bader N, Grune T (2007) Lipofuscin. Formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119:97–111

    Article  PubMed  CAS  Google Scholar 

  29. Jolly RD, Douglas BV, Davey PM et al (1995) Lipofuscin in bovine muscle and brain: a model for studying age pigment. Gerontology 41:283–295

    Article  PubMed  CAS  Google Scholar 

  30. Williams PL (1995) Gray’s Anatomy, 38th edn. Churchill Livingstone, New York

    Google Scholar 

  31. Rajan MT, Jagannatha Rao KS, Mamatha BM et al (1997) Quantification of trace elements in normal human brain by inductively coupled plasma atomic emission spectrometry. J Neurol Sci 146:153–166

    Article  PubMed  CAS  Google Scholar 

  32. Tohno Y, Tohno S, Ongkana N et al (2010) Relationships among the hippocampus, dentate gyrus, mammillary body, fornix, and anterior commissure from a viewpoint of elements. Biol Trace Element Res doi:10.1007/s1211-010-8680-7

    Google Scholar 

  33. Ponka P (1999) Cellular iron metabolism. Kidney Int 69(Suppl):S2–S11

    Article  CAS  Google Scholar 

  34. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  PubMed  CAS  Google Scholar 

  35. Pietrangelo A (2006) Hereditary hemochromatosis. Biochim Biophys Acta 1763:700–710

    Article  PubMed  CAS  Google Scholar 

  36. Andrews NC, Schmidt PJ (2007) Iron homeostasis. Ann Rev Physiol 69:69–85

    Article  CAS  Google Scholar 

  37. Koury MJ, Ponka P (2004) New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Ann Rev Nutr 24:105–131

    Article  CAS  Google Scholar 

  38. Haacke EM, Chen NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25

    Article  PubMed  CAS  Google Scholar 

  39. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  PubMed  CAS  Google Scholar 

  40. Bartzokis G, Tishler TA, Lu PH et al (2007) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 28:414–423

    Article  PubMed  CAS  Google Scholar 

  41. Saris NEL, Mervaala E, Karppanen H et al (2000) Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 294:1–26

    Article  PubMed  CAS  Google Scholar 

  42. Walker W, Parisi A (1968) Magnesium metabolism. N Engl J Med 278:658–663

    Article  Google Scholar 

  43. Tohno S, Ongkana N, Ke L et al (2009) Gender differences in elements of human anterior commissure and olfactory bulb and tract. Biol Trace Element Res doi:10.1007/s12011-009-8559-7

    Google Scholar 

  44. Li M, Zhang Y, Liu Z et al (2007) Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci USA 104:18636–18641

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Tohno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohno, S., Ishizaki, T., Shida, Y. et al. Element Distribution in Visual System, the Optic Chiasma, Lateral Geniculate Body, and Superior Colliculus. Biol Trace Elem Res 142, 335–349 (2011). https://doi.org/10.1007/s12011-010-8794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8794-y

Keywords

Navigation