Skip to main content
Log in

Alginate Encapsulation Stabilizes Xylanase Toward the Laccase Mediator System

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylanase, a hydrolytic enzyme, is susceptible to inactivation by the oxidative conditions generated by the laccase mediator system (LMS). Given the impetus to develop a mixed enzyme system for application in biomass processing industries, xylanase was encapsulated with either Cu2+- or Ca2+-alginate and then exposed to the LMS with variations such as mediator type, mediator concentration, and treatment pH. Results demonstrate that alginate-encapsulated xylanase retains substantial activity (> 80%) when exposed to the LMS relative to non-encapsulated xylanase. Cu2+-alginate generally provided better protection than Ca2+-alginate for all mediators, and protection was observed even at a low pH, where the LMS is most potent. Despite encapsulation, xylanase was still capable of hydrolyzing its polymeric substrate xylan, given kcat/Km values within an order of magnitude of that for non-encapsulated xylanase. The alginate matrix does not impede the function of the oxidized mediator, since comparable Vmax values were observed for the conversion of veratryl alcohol to veratraldehyde by free and Cu2+-alginate encapsulated laccase. Overall, these results support development of a mixed enzyme system for biomass delignification and, more broadly, show potential for protecting protein function in an oxidative environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be made available by the communicating author on reasonable request.

References

  1. Bajpai, P., Anand, A., Sharma, N., Mishra, S. P., Bajpai, P. K., & Lachenal, D. (2006). Enzymes improve ECF bleaching of pulp. BioResources, 1, 34–44.

    Article  Google Scholar 

  2. Woolridge, E. M. (2014). Mixed enzyme systems for delignification of lignocellulosic biomass. Catalysts, 4, 1–35.

    Article  Google Scholar 

  3. Viikari, L., Kantelinen, A., Sundquist, J., & Linko, M. (1994). Xylanases in bleaching: From an idea to the industry. FEMS Microbiology Reviews, 13, 335–350.

    Article  CAS  Google Scholar 

  4. Roncero, M. B., Torres, A. L., Colom, J. F., & Vidal, T. (2005). The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. Bioresource Technology, 96, 21–30.

    Article  CAS  PubMed  Google Scholar 

  5. Moreira, L. (2016). Insights into the mechanism of enzymatic hydrolysis of xylan. Applied Microbiology and Biotechnology, 100, 5205–5214.

    Article  CAS  PubMed  Google Scholar 

  6. Dhiman, S. S., Sharma, J., & Battan, B. (2008). Industrial applications and future prospects of microbial xylanases: A review. BioResources, 3, 1377–1402.

    Google Scholar 

  7. Tebben, L., Shen, Y., & Li, Y. (2018). Improvers and functional ingredients in whole wheat bread: A review of their effects on dough properties and bread quality. Trends in Food Science & Technology, 81, 10–24.

    Article  CAS  Google Scholar 

  8. Bhushan, B., Pal, A., Kumar, S., & Jain, V. (2015). Biochemical characterization and kinetic comparison of encapsulated haze removing acidophilic xylanase with partially purified free xylanase isolated from Aspergillus flavus MTCC 9390. Journal of Food Science and Technology, 52, 191–200.

    Article  CAS  Google Scholar 

  9. Kudanga, T., & Le Roes-Hill, M. (2014). Laccase applications in biofuels production: Current status and future prospects. Applied Microbiology and Biotechnology, 98, 6525–6542.

    Article  CAS  PubMed  Google Scholar 

  10. ten Have, R., & Teunissen, P. J. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chemical Reviews, 101, 3397–3414.

    Article  PubMed  Google Scholar 

  11. Bajpai, P., Anand, A., & Bajpai, P. K. (2006). Bleaching with lignin-oxidizing enzymes. Biotechnology Annual Review, 12, 349–378.

    Article  CAS  PubMed  Google Scholar 

  12. Felby, C., Hassingboe, J., & Lund, M. (2002). Pilot-scale production of fiberboards made by laccase oxidized wood fibers: Board properties and evidence for cross-linking of lignin. Enzyme and Microbial Technology, 31, 736–741.

    Article  CAS  Google Scholar 

  13. Camarero, S., Ibarra, D., Martinez, M. J., & Martinez, A. T. (2005). Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Applied and Environmental Microbiology, 71, 1775–1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Daâssi, D., Rodríguez-Couto, S., Nasri, M., & Mechichi, T. (2014). Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. International Biodeterioration & Biodegradation, 90, 71–78.

    Article  Google Scholar 

  15. Bourbonnais, R., & Paice, M. G. (1990). Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Letters, 267, 99–102.

    Article  CAS  PubMed  Google Scholar 

  16. Call, H. P., & Mücke, I. (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). Journal of Biotechnology, 53, 163–202.

    Article  CAS  Google Scholar 

  17. Cañas, A. I., & Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnology Advances, 28, 694–705.

    Article  PubMed  Google Scholar 

  18. Dedhia, B. S., Vetal, M. D., Rathod, V. K., & Levente, C. (2014). Xylanase and laccase aided bio-bleaching of wheat straw pulp. Canadian Journal of Chemical Engineering, 92, 131–138.

    Article  CAS  Google Scholar 

  19. Oksanen, T., Buchert, J., Amann, M., Candussio, A., & Viikari, L. (2002). Boosting of LMS-bleaching with hemicellulases in progress in biotechnology, vol. 21, (Viikari, L. and Lantto, R., eds.), Elsevier, Amsterdam, pp. 255–262.

  20. Kapoor, M., Kapoor, R., & Kuhad, R. (2007). Differential and synergistic effects of xylanase and laccase mediator system (LMS) in bleaching of soda and waste pulps. Journal of Applied Microbiology, 103, 305–317.

    Article  CAS  PubMed  Google Scholar 

  21. Sharma, D., Chaudhary, R., Kaur, J., & Arya, S. K. (2020). Greener approach for pulp and paper industry by xylanase and laccase. Biocatalysis and Agricultural Biotechnology, 25, 101604.

    Article  Google Scholar 

  22. Bendl, R. F., Kandel, J. M., Amodeo, K. D., Ryder, A. M., & Woolridge, E. M. (2008). Characterization of the oxidative inactivation of xylanase by laccase and a redox mediator. Enzyme and Microbial Technology, 43, 149–156.

    Article  CAS  Google Scholar 

  23. Badon, M., Tekverk, D., Vishnosky, N., & Woolridge, E. (2019). Establishing the oxidative tolerance of Thermomyces lanuginosus xylanase. Journal of Applied Microbiology, 127, 508–519.

    Article  CAS  PubMed  Google Scholar 

  24. Amann, M. (1997). The Lignozym process coming closer to the mill. Ninth ISWFPC Protocol, 4, 1–5.

    Google Scholar 

  25. Li, K., Xu, F., & Eriksson, K.-E.L. (1999). Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Applied and Environmental Microbiology, 65, 2654–2660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sigoillot, C., Camarero, S., Vidal, T., Record, E., Asther, M., Pérez-Boada, M., Martínez, M. J., Sigoillot, J.-C., Asther, M., Colom, J. F., & Martínez, Á. T. (2005). Comparison of different fungal enzymes for bleaching high-quality paper pulps. Journal of Biotechnology, 115, 333–343.

    Article  CAS  PubMed  Google Scholar 

  27. Ibarra, D., Romero, J., Martínez, M. J., Martínez, A. T., & Camarero, S. (2006). Exploring the enzymatic parameters for optimal delignification of eucalypt pulp by laccase-mediator. Enzyme and Microbial Technology, 39, 1319–1327.

    Article  CAS  Google Scholar 

  28. Kurniawati, S., & Nicell, J. A. (2007). Efficacy of mediators for enhancing the laccase-catalyzed oxidation of aqueous phenol. Enzyme and Microbial Technology, 41, 353–361.

    Article  CAS  Google Scholar 

  29. Fillat, A., Colom, J. F., & Vidal, T. (2010). A new approach to the biobleaching of flax pulp with laccase using natural mediators. Bioresource Technology, 101, 4104–4110.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, S., Wu, Z., Chen, G., & Wang, Z. (2018). An improved method to encapsulate laccase from Trametes versicolor with enhanced stability and catalytic activity. Catalysts, 8, 286–297.

    Article  Google Scholar 

  31. Gåserød, O., Sannes, A., & Skjåk-Bræk, G. (1999). Microcapsules of alginate–chitosan. II. A study of capsule stability and permeability. Biomaterials, 20, 773–783.

    Article  PubMed  Google Scholar 

  32. Bhushan, B., Pal, A., & Jain, V. (2015). Improved enzyme catalytic characteristics upon glutaraldehyde cross-linking of alginate entrapped xylanase isolated from Aspergillus flavus MTCC 9390. Enzyme Research, 2015, 1–9.

    Article  Google Scholar 

  33. Jampala, P., Preethi, M., Ramanujam, S., Harish, B., Uppuluri, K. B., & Anbazhagan, V. (2017). Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature. International Journal of Biological Macromolecules, 95, 843–849.

    Article  CAS  PubMed  Google Scholar 

  34. Ouwerx, C., Velings, N., Mestdagh, M., & Axelos, M. (1998). Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polymer Gels and Networks, 6, 393–408.

    Article  CAS  Google Scholar 

  35. Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J., & Thom, D. (1973). Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Letters, 32, 195–198.

    Article  CAS  Google Scholar 

  36. Bibi, Z., Qader, S. A. U., & Aman, A. (2015). Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1, 4-xylanase from Geobacillus stearothermophilus KIBGE-IB29. Extremophiles, 19, 819–827.

    Article  CAS  PubMed  Google Scholar 

  37. Kumar, S., Haq, I., Prakash, J., & Raj, A. (2017). Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis. International Journal of Biological Macromolecules, 98, 24–33.

    Article  CAS  PubMed  Google Scholar 

  38. Mostafa, F. A., El Aty, A. A., Hassan, M. E., & Awad, G. E. (2019). Immobilization of xylanase on modified grafted alginate polyethyleneimine bead based on impact of sodium cation effect. International Journal of Biological Macromolecules, 140, 1284–1295.

    Article  CAS  PubMed  Google Scholar 

  39. Brandi, P., D’Annibale, A., Galli, C., Gentili, P., & Pontes, A. S. N. (2006). In search for practical advantages from the immobilisation of an enzyme: The case of laccase. Journal of Molecular Catalysis B: Enzymatic, 41, 61–69.

    Article  CAS  Google Scholar 

  40. Salvia-Trujillo, L., Decker, E. A., & McClements, D. J. (2016). Influence of an anionic polysaccharide on the physical and oxidative stability of omega-3 nanoemulsions: Antioxidant effects of alginate. Food Hydrocolloids, 52, 690–698.

    Article  CAS  Google Scholar 

  41. Blandino, A., Macias, M., & Cantero, D. (2003). Calcium alginate gel as encapsulation matrix for coimmobilized enzyme systems. Applied Biochemistry and Biotechnology, 110, 53–60.

    Article  CAS  PubMed  Google Scholar 

  42. Kulkarni, A. R., Soppimath, K. S., & Aminabhavi, T. M. (1999). Controlled release of diclofenac sodium from sodium alginate beads crosslinked with glutaraldehyde. Pharmaceutica Acta Helvetiae, 74, 29–36.

    Article  CAS  Google Scholar 

  43. Gomaa, M., Fawzy, M. A., Hifney, A. F., & Abdel-Gawad, K. M. (2018). Use of the brown seaweed Sargassum latifolium in the design of alginate-fucoidan based films with natural antioxidant properties and kinetic modeling of moisture sorption and polyphenolic release. Food Hydrocolloids, 82, 64–72.

    Article  CAS  Google Scholar 

  44. Singh, J., Kaur, K., & Kumar, P. (2018). Optimizing microencapsulation of α-tocopherol with pectin and sodium alginate. Journal of Food Science and Technology, 55, 3625–3631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Katuwavila, N. P., Perera, A., Dahanayake, D., Karunaratne, V., Amaratunga, G. A., & Karunaratne, D. N. (2016). Alginate nanoparticles protect ferrous from oxidation: Potential iron delivery system. International Journal of Pharmaceutics, 513, 404–409.

    Article  CAS  PubMed  Google Scholar 

  46. Anant, B. S., & Pritamdas, C. S. (2019). Antioxidant and prebiotic properties of γ-radiation processed alginate. Current Bioactive Compounds, 15, 242–248.

    Article  CAS  Google Scholar 

  47. Miller, G. (1959). Modified DNS method for reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  48. Wolfenden, B. S., & Willson, R. L. (1982). Radical-cations as reference chromogens in kinetic studies of one-electron transfer reactions: Pulse radiolysis studies of 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Journal of the Chemical Society, Perkin Transactions, 2, 805–812.

    Article  Google Scholar 

  49. Xu, F. (1997). Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. Journal of Biological Chemistry, 272, 924–928.

    Article  CAS  PubMed  Google Scholar 

  50. Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., & Mougin, C. (2002). Crystal structure of a four-copper laccase complexed with an arylamine: Insights into substrate recognition and correlation with kinetics. Biochemistry, 41, 7325–7333.

    Article  CAS  PubMed  Google Scholar 

  51. Gruber, K., Klintschar, G., Hayn, M., Schlacher, A., Steiner, W., & Kratky, C. (1998). Thermophilic xylanase from Thermomyces lanuginosus: High-resolution X-ray structure and modeling studies. Biochemistry, 37, 13475–13485.

    Article  CAS  PubMed  Google Scholar 

  52. Tien, M., & Kirk, T. K. (1988). Lignin peroxidase of Phanerochaete chrysosporium. Methods in Enzymology, 161, 238–249.

    Article  CAS  Google Scholar 

  53. Edward, V. A., Pillay, V. L., Swart, P., & Singh, S. (2002). Immobilization of xylanase from Thermomyces lanuginosus SSBP using Eudragit S-100. South African Journal of Science, 98, 553–554.

    CAS  Google Scholar 

  54. Ashraf, H., & Husain, Q. (2010). Use of DEAE cellulose adsorbed and crosslinked white radish (Raphanus sativus) peroxidase for the removal of α-naphthol in batch and continuous process. International Biodeterioration & Biodegradation, 64, 27–31.

    Article  CAS  Google Scholar 

  55. Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: An overview on techniques and support materials. 3 Biotech, 3, 1–9.

  56. Velings, N. M., & Mestdagh, M. M. (1995). Physico-chemical properties of alginate gel beads. Polymer Gels and Networks, 3, 311–330.

    Article  CAS  Google Scholar 

  57. Thu, B., Smidsrod, O., & Skjåk-Bræk, G. (1996). Alginate gels-some structure-function correlations relevant to their use as immobilization matrix for cellsin immobilized bells: Basics and applications, (Wijffels, R. H., Buitelaar, R. M., Bucke, C. and Tramper, J., eds.), Elsevier, Amsterdam, pp. 19–30.

  58. Palmieri, G., Giardina, P., Desiderio, B., Marzullo, L., Giamberini, M., & Sannia, G. (1994). A new enzyme immobilization procedure using copper alginate gel: Application to a fungal phenol oxidase. Enzyme and Microbial Technology, 16, 151–158.

    Article  CAS  PubMed  Google Scholar 

  59. Khajouei, R. A., Keramat, J., Hamdami, N., Ursu, A.-V., Delattre, C., Laroche, C., Gardarin, C., Lecerf, D., Desbrières, J., & Djelveh, G. (2018). Extraction and characterization of an alginate from the Iranian brown seaweed Nizimuddinia zanardini. International Journal of Biological Macromolecules, 118, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  60. Nath, D., & Rao, M. (1998). Structural and functional role of tryptophan in xylanase from an extremophilic Bacillus: Assessment of the active site. Biochemical and Biophysical Research Communications, 249, 207–212.

    Article  CAS  PubMed  Google Scholar 

  61. Mehnati-Najafabadi, V., Taheri-Kafrani, A., Bordbar, A.-K., & Eidi, A. (2019). Covalent immobilization of xylanase from Thermomyces lanuginosus on aminated superparamagnetic graphene oxide nanocomposite. Journal of the Iranian Chemical Society, 16, 21–31.

    Article  CAS  Google Scholar 

  62. Gouda, M. K., & Abdel-Naby, M. A. (2002). Catalytic properties of the immobilized Aspergillus tamarii xylanase. Microbiological Research, 157, 275–281.

    Article  CAS  PubMed  Google Scholar 

  63. Jiang, Y., Wu, Y., & Li, H. (2015). Immobilization of Thermomyces lanuginosus xylanase on aluminum hydroxide particles through adsorption: Characterization of immobilized enzyme. Journal of Microbiology and Biotechnology, 25, 2016–2023.

    Article  CAS  PubMed  Google Scholar 

  64. Kapoor, M., & Kuhad, R. C. (2007). Immobilization of xylanase from Bacillus pumilus strain MK001 and its application in production of xylo-oligosaccharides. Applied Biochemistry and Biotechnology, 142, 125–138.

    Article  CAS  PubMed  Google Scholar 

  65. Edward, V. A., Pillay, V. L., Swart, P., Jacobs, E., & Singh, S. (2003). Degradation of synthetic xylan effluent using a membrane bioreactor. South African Journal of Science, 99, 315–317.

    CAS  Google Scholar 

  66. Sukri, S. S. M., & Mimi Sakinah, A. (2018). Production of high commercial value xylooligosaccharides from Meranti wood sawdust using immobilised xylanase. Applied Biochemistry and Biotechnology, 184, 278–290.

    Article  CAS  PubMed  Google Scholar 

  67. Liang, J. F., Li, Y. T., & Yang, V. C. (2000). Biomedical application of immobilized enzymes. Journal of Pharmaceutical Sciences, 89, 979–990.

    Article  CAS  PubMed  Google Scholar 

  68. Matto, M., & Husain, Q. (2009). Calcium alginate–starch hybrid support for both surface immobilization and entrapment of bitter gourd (Momordica charantia) peroxidase. Journal of Molecular Catalysis B: Enzymatic, 57, 164–170.

    Article  CAS  Google Scholar 

  69. Camarero, S., Ibarra, D., Martínez, Á. T., Romero, J., Gutiérrez, A., & del Río, J. C. (2007). Paper pulp delignification using laccase and natural mediators. Enzyme and Microbial Technology, 40, 1264–1271.

    Article  CAS  Google Scholar 

  70. Baker, C. J., Mock, N. M., Whitaker, B. D., Hammond, R. W., Nemchinov, L., Roberts, D. P., & Aver’yanov, A. A. (2014). Characterization of apoplast phenolics: In vitro oxidation of acetosyringone results in a rapid and prolonged increase in the redox potential. Physiological and Molecular Plant Pathology, 86, 57–63.

    Article  CAS  Google Scholar 

  71. Pardo, I., Chanagá, X., Vicente, A. I., Alcalde, M., & Camarero, S. (2013). New colorimetric screening assays for the directed evolution of fungal laccases to improve the conversion of plant biomass. BMC Biotechnology, 13, 1–14.

    Article  Google Scholar 

  72. Fabbrini, M., Galli, C., & Gentili, P. (2002). Comparing the catalytic efficiency of some mediators of laccase. Journal of Molecular Catalysis: B, Enzymatic, 16, 231–240.

    Article  CAS  Google Scholar 

  73. Morozova, O., Shumakovich, G., Shleev, S., & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Applied Biochemistry and Microbiology, 43, 523–535.

    Article  CAS  Google Scholar 

  74. Reinhammar, B. R. (1972). Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin. Biochimica et Biophysica Acta-Bioenergetics, 275, 245–259.

    Article  CAS  Google Scholar 

  75. Mani, P., Fidal Kumar, V. T., Keshavarz, T., Chandra, T. S., & Kyazze, G. (2018). The role of natural laccase redox mediators in simultaneous dye decolorization and power production in microbial fuel cells. Energies, 11, 3455.

    Article  Google Scholar 

Download references

Funding

The research was supported by the Dr. J. Richard LaPietra Fellowship to Annemarie Lee and Alexandra Maalouf.

Author information

Authors and Affiliations

Authors

Contributions

Annemarie Lee, Esabelle Gervasio, Riley Hughes, Alexandra Maalouf, Samantha Musso, and Elisa Woolridge performed the experiments and analyzed the data. Riley Hughes, Alexandra Maalouf, Alicia Crisalli, and Elisa Woolridge contributed to method development. Annemarie Lee, Esabelle Gervasio, and Elisa Woolridge wrote the first draft of the manuscript; Elisa Woolridge completed subsequent versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elisa M. Woolridge.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors declare the consent to participate.

Consent for Publication

The authors declare the consent to publish.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, A.A., Gervasio, E.D., Hughes, R.O. et al. Alginate Encapsulation Stabilizes Xylanase Toward the Laccase Mediator System. Appl Biochem Biotechnol 195, 3311–3326 (2023). https://doi.org/10.1007/s12010-022-04296-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04296-7

Keywords

Navigation