Skip to main content
Log in

Immobilization of Xylanase from Bacillus pumilus Strain MK001 and its Application in Production of Xylo-oligosaccharides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylanase from Bacillus pumilus strain MK001 was immobilized on different matrices following varied immobilization methods. Entrapment using gelatin (GE) (40.0%), physical adsorption on chitin (CH) (35.0%), ionic binding with Q-sepharose (Q-S) (45.0%), and covalent binding with HP-20 beads (42.0%) showed the maximum xylanase immobilization efficiency. The optimum pH of immobilized xylanase shifted up to 1.0 unit (pH 7.0) as compared to free enzyme (pH 6.0). The immobilized xylanase exhibited higher pH stability (up to 28.0%) in the alkaline pH range (7.0–10.0) as compared to free enzyme. Optimum temperature of immobilized xylanase was observed to be 8 °C higher (68.0 °C) than free enzyme (60.0 °C). The free xylanase retained 50.0% activity, whereas xylanase immobilized on HP-20, Q-S, CH, and GE retained 68.0, 64.0, 58.0, and 57.0% residual activity, respectively, after 3 h of incubation at 80.0 °C. The immobilized xylanase registered marginal increase and decrease in K m and V max values, respectively, as compared to free enzyme. The immobilized xylanase retained up to 70.0% of its initial hydrolysis activity after seven enzyme reaction cycles. The immobilized xylanase was found to produce higher levels of high-quality xylo-oligosaccharides from birchwood xylan, indicating its potential in the nutraceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sunna, A., & Antranikian, G. (1997), Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17, 39–67.

    CAS  Google Scholar 

  2. Kuhad, R. C., Singh, A., & Eriksson, K.-E. L. (1997), Microorganisms and enzymes involved in the degradation of plant fiber cell wall. Advances in Biochemical Engineering/Biotechnologies, 57, 47–125.

    Google Scholar 

  3. Subramaniyan, S., & Prema, P. (2002), Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Critical Reviews in Biotechnology, 22, 33–64.

    Article  CAS  Google Scholar 

  4. Bajpai, P. (2004). Biological bleaching of pulps. Critical Reviews in Biotechnology, 24, 1–58.

    Article  CAS  Google Scholar 

  5. Kulkarni, N., Shendye, A., & Rao, M. (1999), Molecular and biotechnology aspects of xylanases. FEMS Microbiology Reviews, 23, 411–456.

    Article  CAS  Google Scholar 

  6. Bhat, M. K. (2000), Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  7. Beg, Q. K., Kapoor, M., Bhushan, B., & Hoondal, G. S. (2001), Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  8. Okazaki, M., Fujikawa, S., & Matsumoto, N. (1990), Effect of xylooligosaccharide on the growth of Bifidobacteria. Bifidobacteria Microflora, 9, 77–86.

    Google Scholar 

  9. Krajewska, B. (2004), Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35, 126–139.

    Article  CAS  Google Scholar 

  10. Perry, J., & Wetzel, R. (1984), Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation. Science, 226, 555–557.

    Article  CAS  Google Scholar 

  11. Imanaka, T., Shibazaki, M., & Takagi, M. (1986), A new way of enhancing the thermostability of proteases. Nature, 324, 695–697.

    Article  CAS  Google Scholar 

  12. Braxton, S., & Wells, J. (1992), Incorporation of a stabilizing Ca2Cbinding loop into subtilisin BPN. Biochemist, 31, 7796–7801.

    Article  CAS  Google Scholar 

  13. Zaborsky, O. (1973), Introduction. Weast R. C. ed., Ohio, pp. 1–2.

  14. Rogalski, J., Szczodrak, J., Dawidowicz, A., Ilczuk, Z., & Leonowica, A. (1985), Immobilization of cellulase and d-xylanase complexes from Aspergillus terrus F-413 on controlled porosity glasses. Enzyme and Microbial Technology, 7, 395–400.

    Article  CAS  Google Scholar 

  15. Abdel-Naby, M. A. (1993), Immobilization of Aspergillus niger NRC 107 xylanase and β-xylosidase, and properties of the immobilized enzymes. Applied Biochemistry and Biotechnology, 38, 69–81.

    Article  CAS  Google Scholar 

  16. Tyagi, R., & Gupta, M. N. (1995), Immobilization of Aspergillus niger xylanase on magnetic latex beads. Biotechnology and Applied Biochemistry, 21, 217–222.

    CAS  Google Scholar 

  17. Dumitriu, S., & Chornet, E. (1997), Immobilization of xylanase in chitosan-xanthan hydrogels. Biotechnology Progress, 13, 539–545.

    Article  CAS  Google Scholar 

  18. Gouda, M. K., & Abdel-Naby, M. A. (2002), Catalytic properties of the immobilized Aspergillus tamarii xylanase. Microbiological Research, 157, 275–281.

    Article  CAS  Google Scholar 

  19. Ai, Z., Jaing, Z., Li, L., Deng, W., Kusakabe, I., & Li, H. (2005), Immobilization of Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production. Process Biochemistry, 40, 2707–2714.

    Article  CAS  Google Scholar 

  20. Sharma, K. K., Kapoor, M., & Kuhad, R. C. (2005), In-vivo enzymatic digestion (IVED), In-vitro xylanase digestion (IVXD), metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02. Letters in Applied Microbiology, 41, 24–31.

    Article  CAS  Google Scholar 

  21. Miller, G. L. (1959), Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. C., & Randall, R. J. (1951), Protein measurement with Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  23. Dubois, M., Gilles, K. A., Hamilton, I. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  24. Roy, P. K., Roy, U., & Dube, D. (1984), Immobilized cellulolytic and hemicellulolytic enzymes from Macrophomina phaseolina. Journal of Chemical Technology and Biotechnology, 34, 165–170.

    Google Scholar 

  25. Ohtakara, A., & Mitsutomi, M. (1987), Immobilization of thermostable α-galactosidase from Pycnoporous cinnabarinus on chitosan beads and its application to the hydrolysis of raffinose in beet sugar molasses. Journal of Fermentation Technology, 65, 493–498.

    Article  Google Scholar 

  26. Woodward, J. (1984). Immobilised cells and enzymes—A practical approach. Washington DC: IRL Press Oxford.

    Google Scholar 

  27. Yang, D., & Rhee, J. S. (1992), Continuous hydrolysis of olive oil by immobilized lipase in organic solvent. Biotechnology and Bioengineering, 40, 748–752.

    Article  CAS  Google Scholar 

  28. Siso, M. J., Graber, M., Condoret, J.-M., & Combes, D. (1990), Effect of diffusional resistances on the action pattern of immobilized alpha-amylase. Journal of Chemical Technology and Biotechnology, 48, 185–200.

    CAS  Google Scholar 

  29. Dessouki, A. M., Issa, G. I., & Atia, K. S. (2001), Pullulanase immobilization on natural and synthetic polymers. Journal of Chemical Technology and Biotechnology, 76, 700–706.

    Article  CAS  Google Scholar 

  30. Dessouki, A. M., & Atia, K. S. (2000), Immobilization of adenosine deaminase onto agarose and casein. Biomacromolecules, 3, 432–437.

    Article  CAS  Google Scholar 

  31. Sardara, M., Roy, I., & Gupta, M. N. (2000), Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer Eudragit TM L-100. Enzyme and Microbial Technology, 27, 672–679.

    Article  Google Scholar 

  32. Bimachi, D., Golini, P., Bortolo, R., Battistel, E., Tassinari, R., & Cesti, P. (1997), Immobilization of glutaryl-7-ACA acylase on aminoalkylated polyacrylic supports. Enzyme and Microbial Technology, 20, 368–372.

    Article  Google Scholar 

  33. Abdel-Naby, M. A., Sherif, A. A., EL-Tanash, A. B., & Mankarios, A. T. (1999), Immobilization of Aspergillus oryzae tannase and properties of the immobilized enzyme. Journal of Applied Microbiology, 87, 108–114.

    Article  CAS  Google Scholar 

  34. Chang, T. M. S. (1964), Semi permeable microcapsules. Science, 146, 524–625.

    Article  CAS  Google Scholar 

  35. Mojovic, L., Knezevic, Z., Popadic, R., & Jovanovic, S. (1998), Immobilization of lipase from Candida rugosa on a polymer support. Applied Microbiology and Biotechnology, 50, 676–681.

    Article  CAS  Google Scholar 

  36. Krajewska, B., Leszko, M., & Zaborska, W. (1990), Urease immobilized on chitosan membrane: preparation and properties. Journal of Chemical Technology and Biotechnology, 48, 337–350.

    CAS  Google Scholar 

  37. Bissett, F., & Sternberg, D. (1978), Immobilization of Aspergillus beta-glucosidase on chitosan. Applied and Environmental Microbiology, 35, 750–755.

    CAS  Google Scholar 

  38. Dosanjh, N. S., & Kaur, J. (2002), Immobilization, stability and esterification studies of a lipase from a Bacillus sp. Biotechnology and Applied Biochemistry, 36, 7–12.

    Article  CAS  Google Scholar 

  39. Rosevear, A. (1984), Immobilised biocatalysts — a critical review. Journal of Chemical Technology and Biotechnology, 34, 127–150.

    Google Scholar 

  40. Klibanov, A. M. (1979), Enzyme stabilization by immobilization. Analytical Biochemistry, 93, 1–25.

    Article  CAS  Google Scholar 

  41. Gomez, L., Ramýrez, H., Neira-Carrillo, A., & Villalonga, R. (2006), Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin. Bioprocess and Biosystems Engineering, 28, 387–395.

    Article  CAS  Google Scholar 

  42. Munjal, N., & Sawhney, S. K. (2002), Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme and Microbial Technology, 30, 613–619.

    Article  CAS  Google Scholar 

  43. Guilbault, G. G. (1984). In G. G. Guilbault (Ed.), Analytical uses of immobilized enzymes (pp. 77–164). New York: Marcel Dekker.

    Google Scholar 

  44. Gawande, P. V., & Kamat, M. Y. (1999), Purification of Aspergillus sp. xylanase by precipitation with an anionic polymer Eudragit S-100. Process Biochemistry, 34, 572–580.

    Article  Google Scholar 

  45. Edward, V. A., Pillay, V. L., Swart, P., & Singh, S. (2002), Immobilization of xylanase from Thermomyces lanuginosus SSBP using Eudragit S-100. South African Journal of Science, 98, 553–554.

    CAS  Google Scholar 

  46. Xu, Z.-H., Bai, Y.-L., Xu, X., Shi, J.-S., & Tao, W.-Y. (2005), Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp. WLUN024 with wheat bran as the main substrate. World Journal of Microbiology and Biotechnology, 21, 575–581.

    Article  CAS  Google Scholar 

  47. Gawande, P. V., & Kamat, M. Y. (1998), Preparation, characterization and application of Aspergillus sp. xylanase immobilized on Eudragit S-100. Journal of Biotechnology, 66, 165–175.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the research grant from Department of Biotechnology, India. M.K is grateful to the Council of Scientific and Industrial Research for a grant of Senior Research Fellowship. The technical assistance provided by Mr. Manwar Singh is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chander Kuhad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, M., Kuhad, R.C. Immobilization of Xylanase from Bacillus pumilus Strain MK001 and its Application in Production of Xylo-oligosaccharides. Appl Biochem Biotechnol 142, 125–138 (2007). https://doi.org/10.1007/s12010-007-0013-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0013-8

Keywords

Navigation