Skip to main content
Log in

Production of Cadaverine in Recombinant Corynebacterium glutamicum Overexpressing Lysine Decarboxylase (ldcC) and Response Regulator dr1558

  • Short Communication
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the response regulator DR1558 from Deinococcus radiodurans was overexpressed in recombinant Corynebacterium glutamicum with lysine decarboxylase (ldcC). The recombinant C. glutamicum strain overexpressing dr1558 and ldcC produced 5.9 g/L of cadaverine by flask cultivation, whereas the control strain overexpressing only ldcC produced 4.5 g/L of cadaverine. To investigate the mechanism underlying the effect of DR1558, the expression levels of genes related to central metabolism and lysine-biosynthesis were analyzed by quantitative-real time polymerase chain reaction. The results showed that phosphoenolpyruvate carboxykinase (pck) was downregulated, and pyruvate kinase (pyk) and other lysine biosynthesis genes were upregulated. Furthermore, in fed-batch fermentation, C. glutamicum coexpressing dr1558 produced 25.14 g/L of cadaverine, a 1.25-fold increase in concentration relative to the control. These results suggested that the heterologous expression of dr1558 may improve the production of biorefinery products by recombinant C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Li, Q. Z., Jiang, X. L., Feng, X. J., Wang, J. M., Sun, C., Zhang, H. B., et al. (2016). Recovery processes of organic acids from fermentation broths in the biomass-based industry. Journal of Microbiology and Biotechnology, 26, 1–8.

    Article  CAS  Google Scholar 

  2. Oh, Y. H., Eom, I. Y., Joo, J. C., Yu, J. H., Song, B. K., Lee, S. H., et al. (2015). Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean Journal of Chemical Engineering, 32, 1945–1959.

    Article  CAS  Google Scholar 

  3. Willke, T., & Vorlop, K. D. (2004). Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology, 66, 131–142.

    Article  CAS  Google Scholar 

  4. Bozell, J. J., Astner, A., Baker, D., Biannic, B., Cedeno, D., Elder, T., et al. (2014). Integrating separation and conversion—Conversion of biorefinery process streams to biobased chemicals and fuels. Bioenergy Research, 7, 856–866.

    Article  CAS  Google Scholar 

  5. Jang, Y. S., Kim, B., Shin, J. H., Choi, Y. J., Choi, S., Song, C. W., et al. (2012). Bio-based production of C2–C6 platform chemicals. Biotechnology and Bioengineering, 109, 2437–2459.

    Article  CAS  Google Scholar 

  6. Qian, Z. G., Xia, X. X., & Lee, S. Y. (2011). Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine. Biotechnology and Bioengineering, 108, 93–103.

    Article  CAS  Google Scholar 

  7. Becker, J., Rohles, C. M., & Wittmann, C. (2018). Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metabolic Engineering, 50, 122–141.

    Article  CAS  Google Scholar 

  8. Clomburg, J. M., & Gonzalez, R. (2013). Anaerobic fermentation of glycerol: A platform for renewable fuels and chemicals. Trends in Biotechnology, 31, 20–28.

    Article  CAS  Google Scholar 

  9. Kind, S., & Wittmann, C. (2011). Bio-based production of the platform chemical 1, 5-diaminopentane. Applied Microbiology and Biotechnology, 91, 1287–1296.

    Article  CAS  Google Scholar 

  10. Lee, J. W., Kim, H. U., Choi, S., Yi, J., & Lee, S. Y. (2011). Microbial production of building block chemicals and polymers. Current Opinion in Biotechnology, 22, 758–767.

    Article  CAS  Google Scholar 

  11. Noda, S., & Kondo, A. (2017). Recent advances in microbial production of aromatic chemicals and derivatives. Trends in Biotechnology, 35, 785–796.

    Article  CAS  Google Scholar 

  12. Kind, S., Kreye, S., & Wittmann, C. (2011). Metabolic engineering of cellular transport for overproduction of the platform chemical 1, 5-diaminopentane in Corynebacterium glutamicum. Metabolic Engineering, 13(5), 617–627.

    Article  CAS  Google Scholar 

  13. Mimitsuka, T., Sawai, H., Hatsu, M., & Yamada, K. (2007). Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Bioscience, Biotechnology, and Biochemistry, 71, 2130–2135.

    Article  CAS  Google Scholar 

  14. Ma, W., Cao, W., Zhang, H., Chen, K., Li, Y., & Ouyang, P. (2015). Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnology Letters, 37, 799–806.

    Article  CAS  Google Scholar 

  15. Krithika, G., Arunachalam, J., Pyriyanka, H., & Indulekha, K. (2010). The two forms of Lysine decarboxylase; Kinetics and effect of expression in relation to acid tolerance response in E. coli. Journal of Experimental Sciences, 1, 10–21.

    Google Scholar 

  16. Lee, J. Y., Seo, J., Kim, E. S., Lee, H. S., & Kim, P. (2013). Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnology Letters, 35, 709–717.

    Article  CAS  Google Scholar 

  17. Follmann, M., Ochrombel, I., Krämer, R., Trötschel, C., Poetsch, A., Rückert, C., et al. (2009). Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genomics, 10, 621.

    Article  CAS  Google Scholar 

  18. Rönsch, H., Krämer, R., & Morbach, S. (2003). Impact of osmotic stress on volume regulation, cytoplasmic solute composition and lysine production in Corynebacterium glutamicum MH20-22B. Journal of Biotechnology, 104, 87–97.

    Article  CAS  Google Scholar 

  19. Si, M., Wang, J., Xiao, X., Guan, J., Zhang, Y., Ding, W., et al. (2015). Ohr protects Corynebacterium glutamicum against organic hydroperoxide induced oxidative stress. PLoS One. 10.

  20. Si, M., Zhang, L., Chaudhry, M. T., Ding, W., Xu, Y., Chen, C., et al. (2015). Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance. Applied and Environment Microbiology, 81, 2781–2796.

    Article  CAS  Google Scholar 

  21. Si, M. R., Zhang, L., Yang, Z. F., Xu, Y. X., Liu, Y. B., Jiang, C. Y., et al. (2014). NrdH redoxin enhances resistance to multiple oxidative stresses by acting as a peroxidase cofactor in Corynebacterium glutamicum. Applied and Environment Microbiology, 80, 1750–1762.

    Article  CAS  Google Scholar 

  22. Oide, S., Gunji, W., Moteki, Y., Yamamoto, S., Suda, M., Jojima, T., et al. (2015). Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Applied and Environment Microbiology, 81, 2284–2298.

    Article  CAS  Google Scholar 

  23. Krisko, A., & Radman, M. (2013). Biology of extreme radiation resistance: The way of Deinococcus radiodurans. Cold Spring Harbor Perspectives in Biology, 5, a012765.

    Article  CAS  Google Scholar 

  24. Appukuttan, D., Singh, H., Park, S. H., Jung, J. H., Jeong, S., Seo, H. S., et al. (2016). Engineering synthetic multistress tolerance in Escherichia coli by using a deinococcal response regulator, DR1558. Applied and Environment Microbiology, 82, 1154–1166.

    Article  CAS  Google Scholar 

  25. Kim, S. M., Lim, S. Y., Park, S. J., Joo, J. C., Choi, J. I., et al. (2017). Enhancement of lysine production in recombinant Corynebacterium glutamicum through expression of Deinococcus radiodurans pprM and dr1558 Genes. Microbiology and Biotechnology Letters, 45, 271–275.

    Article  CAS  Google Scholar 

  26. Nakayama, K., & Araki, K. (1973). U.S. Patent No. 3,708,395. U.S. Patent and Trademark Office.

  27. Oh, Y. H., Choi, J. W., Kim, E. Y., Song, B. K., Jeong, K. J., Park, K., et al. (2015). Construction of synthetic promoter-based expression cassettes for the production of cadaverine in recombinant Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 176, 2065–2075.

    Article  CAS  Google Scholar 

  28. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  29. Kim, Y. H., Kim, H. J., Shin, J. H., Bhatia, S. K., Seo, H. M., Kim, Y. G., et al. (2015). Application of diethyl ethoxymethylenemalonate (DEEMM) derivatization for monitoring of lysine decarboxylase activity. Journal of Molecular Catalysis B: Enzymatic, 115, 151–154.

    Article  CAS  Google Scholar 

  30. Ikeda, M., Ohnishi, J., Hayashi, M., & Mitsuhashi, S. (2006). A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. Journal of Industrial Microbiology and Biotechnology, 33, 610–615.

    Article  CAS  Google Scholar 

  31. Kind, S., Jeong, W. K., Schröder, H., & Wittmann, C. (2010). Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metabolic Engineering, 12, 341–351.

    Article  CAS  Google Scholar 

  32. Imao, K., Konishi, R., Kishida, M., Hirata, Y., Segawa, S., Adachi, N., et al. (2017). 1, 5-Diaminopentane production from xylooligosaccharides using metabolically engineered Corynebacterium glutamicum displaying beta-xylosidase on the cell surface. Bioresource Technology, 245, 1684–1691.

    Article  CAS  Google Scholar 

  33. De Graaf, A., Eggeling, L., & Sahm, H. (2001). Metabolic engineering for L-lysine production by Corynebacterium glutamicum. Metabolic Engineering, 73, 9–29.

    Article  Google Scholar 

  34. Becker, J., Klopprogge, C., & Wittmann, C. (2008). Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Microbial Cell Factories, 7, 8.

    Article  CAS  Google Scholar 

  35. Xu, J., Han, M., Zhang, J., Guo, Y., & Zhang, W. (2014). Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids, 46, 2165–2175.

    Article  CAS  Google Scholar 

  36. Guo, S., Yi, X., Zhang, W., Wu, M., Xin, F., Dong, W., et al. (2017). Inducing hyperosmotic stress resistance in succinate-producing Escherichia coli by using the response regulator DR1558 from Deinococcus radiodurans. Process Biochemistry, 61, 30–37.

    Article  CAS  Google Scholar 

  37. Park, S. H., Kim, G. B., Kim, H. U., Park, S. J., & Choi, J. (2019). Enhanced production of poly-3-hydroxybutyrate (PHB) by expression of response regulator DR1558 in recombinant Escherichia coli. International Journal of Biological Macromolecules, 131, 29–35.

    Article  CAS  Google Scholar 

  38. Park, S. J., Sohn, Y. J., Park, S. J., & Choi, J. (2020). Enhanced production of 2, 3-butanediol in recombinant Escherichia coli using response regulator DR1558 derived from Deinococcus radiodurans. Biotechnology and Bioprocess Engineering, 25, 45–52.

    Article  CAS  Google Scholar 

  39. Huang, Y., Ji, X., Ma, Z., Łężyk, M., Xue, Y., & Zhao, H. (2021). Green chemical and biological synthesis of cadaverine: Recent development and challenges. RSC Advances, 11, 23922–23942.

    Article  CAS  Google Scholar 

  40. Ma, W., Chen, K., Li, Y., Hao, N., Wang, X., & Ouyan, P. (2017). Advances in cadaverine bacterial production and its applications. Engineering, 3, 308–317.

    Article  Google Scholar 

  41. Kind, S., Jeong, W. K., Schröder, H., Zelder, O., & Wittmann, C. (2010). Identification and elimination of the competing N-Acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Applied and Environment Microbiology, 76, 5175–5180.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1D1A1B07049359) and the Golden Seed Project Grant funded by the Ministry of Oceans and Fisheries (213008–05-5-SB910).

Author information

Authors and Affiliations

Authors

Contributions

S. Kang and J. Choi designed the experiments, analyzed the data, and wrote the paper.

Corresponding author

Correspondence to Jong-il Choi.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

I confirm that the final manuscript has been seen and approved by all the authors. The undersigned author transfers all copyright ownership of the manuscript to Applied Biochemistry and Biotechnology in the event the work is published.

Consent for Publication

We hope that you will find our manuscript acceptable for publication in the above journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Sb., Choi, Ji. Production of Cadaverine in Recombinant Corynebacterium glutamicum Overexpressing Lysine Decarboxylase (ldcC) and Response Regulator dr1558. Appl Biochem Biotechnol 194, 1013–1024 (2022). https://doi.org/10.1007/s12010-021-03685-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03685-8

Keywords

Navigation