Skip to main content

Advertisement

Log in

Integrating Separation and Conversion—Conversion of Biorefinery Process Streams to Biobased Chemicals and Fuels

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The concept of the integrated biorefinery is critical to developing a robust biorefining industry in the USA. Within this model, the biorefinery will produce fuel as a high-volume output addressing domestic energy needs and biobased chemical products (high-value organics) as an output providing necessary economic support for fuel production. This paper will overview recent developments within two aspects of the integrated biorefinery—the fractionation of biomass into individual process streams and the subsequent conversion of lignin into chemical products. Solvent-based separation of switchgrass, poplar, and mixed feedstocks is being developed as a biorefinery “front end” and will be described as a function of fractionation conditions. Control over the properties and structure of the individual biomass components (carbohydrates and lignin) can be observed by adjusting the fractionation process. Subsequent conversion of the lignin isolated from this fractionation leads to low molecular weight aromatics from selective chemical oxidation. Together, processes such as these provide examples of foundational technology that will contribute to a robust domestic biorefining industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weissermel K, Arpe H-J (2003) Industrial organic chemistry, 4th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Marshall J (2007) Biorefineries: curing our addiction to oil. New Scientist 2007(2611):28–31

    Google Scholar 

  3. Guide to the business of chemistry 2006. American Chemistry Council: Arlington, 2006.

  4. Bozell JJ (2008) Feedstocks for the future—biorefinery production of chemicals from renewable carbon. Clean-Soil Air Water 36:641–647

    Article  CAS  Google Scholar 

  5. Bozell JJ (2010) Connecting biomass and petroleum processing with a chemical bridge. Science 329:522–523

    Article  CAS  PubMed  Google Scholar 

  6. Luo L, van der Voet E, Huppes G (2010) Biorefining of lignocellulosic feedstock—technical, economic and environmental considerations. Bioresour Technol 101:5023–5032

    Article  CAS  PubMed  Google Scholar 

  7. Annual Energy Review 2011. 2012, U.S. Department of Energy, DOE/EIA-0384, available at http://www.eia.doe.gov

  8. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  9. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002

    Article  CAS  PubMed  Google Scholar 

  10. Li CL, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906

    Article  CAS  PubMed  Google Scholar 

  11. Burkhardt S, Kumar L, Chandra R, Saddler J (2013) How effective are traditional methods of compositional analysis in providing an accurate material balance for a range of softwood derived residues? Biotech. Biofuels. 6

  12. Katahira R, Sluiter JB, Schell DJ, Davis MF (2013) Degradation of carbohydrates during dilute sulfuric acid pretreatment can interfere with lignin measurements in solid residues. J Agric Food Chem 61:3286–3292

    Article  CAS  PubMed  Google Scholar 

  13. Lora JH, Wu CF, Pye EK, Balatinecz JJ (1989) Characteristics and potential applications of lignin produced by an organosolv pulping process. ACS Symp Ser 397:312–323

    Article  CAS  Google Scholar 

  14. Pye EK, Lora JH (1991) The Alcell process—a proven alternative to kraft pulping. Tappi J 74:113–118

    CAS  Google Scholar 

  15. Oliet M, Garcia J, Rodriguez F, Gilarrranz MA (2002) Solvent effects in autocatalyzed alcohol-water pulping: comparative study between ethanol and methanol as delignifying agents. Chem Eng J 87:157–162

    Article  CAS  Google Scholar 

  16. Shatalov AA, Pereira H (2007) Polysaccharide degradation during ozone-based TCF bleaching of non-wood organosolv pulps. Carbohydr Polym 67:275–281

    Article  CAS  Google Scholar 

  17. Sixta H, Harms H, Dapia S, Parajo JC, Puls J, Saake B, Fink HP, Roder T (2004) Evaluation of new organosolv dissolving pulps. Part I: preparation, analytical characterization and viscose processability. Cellulose 11:73–83

    Article  CAS  Google Scholar 

  18. Ruzene DS, Goncalves AR, Teixeira JA, De Amorim MTP (2007) Carboxymethyl cellulose obtained by ethanol/water organosolv process under acid conditions. Appl Biochem Biotechnol 137:573–582

    PubMed  Google Scholar 

  19. Bozell JJ, Black SK, Myers M, Cahill D, Miller WP, Park S (2011) Solvent fractionation of renewable woody feedstocks: organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass Bioenergy 35:4197–4208

    Article  CAS  Google Scholar 

  20. Bozell JJ, O'Lenick CJ, Warwick S (2011) Biomass fractionation for the biorefinery: heteronuclear multiple quantum coherence-nuclear magnetic resonance investigation of lignin isolated from solvent fractionation of switchgrass. J Agric Food Chem 59:9232–9242

    Article  CAS  PubMed  Google Scholar 

  21. Bozell JJ, Astner A, Young T (2014) Qual Eng, manuscript submitted.

  22. Sultana A, Kumar A (2011) Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery. Bioresour Technol 102:9947–9956

    Article  CAS  PubMed  Google Scholar 

  23. Taguchi G (1993) Taguchi on robust technology development: bringing quality engineering upstream. American Society of Mechanical Engineers Press, New York

    Book  Google Scholar 

  24. Rushton, M., Biochemicals and bioproducts: the new focus of biorefining. CanBio Annual Conference, Vancouver, BC, 2012, http://www.canbio.ca/upload/documents/van-12-presentations/rushton-mike.pdf.

  25. Bozell J, Dimmel DR, Power A (1994) Pulping catalysts from lignin. Ind. Uses Agric. Mat. Sit. Outlook Rep. 27–33

  26. Gluckstein, J., Hu, M., Kidder, M., McFarlane, J., Narula, C., Sturgeon, M. Final report: investigation of catalytic pathways for lignin breakdown into monomers and fuels. 2010, ORNL/TM-2010/281

  27. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  PubMed  Google Scholar 

  28. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 54:519–546

    CAS  Google Scholar 

  29. Baciocchi E, Rosato GC, Rol C, Sebastiani GV (1992) TiO2-catalyzed photooxygenation of methylaromatic compounds in the presence of Ag2SO4 in CH3CN. Tetrahedron Lett 33:5437–5440

    Article  CAS  Google Scholar 

  30. Wu A, Patrick BO, Chung E, James BR (2012) Hydrogenolysis of beta-O-4 lignin model dimers by a ruthenium-xantphos catalyst. Dalton Trans 41:11093–11106

    Article  CAS  PubMed  Google Scholar 

  31. Nichols JM, Bishop LM, Bergman RG, Ellman JA (2010) Catalytic C-O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers. J Am Chem Soc 132:12554–12555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sergeev AG, Hartwig JF (2011) Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 332:439–443

    Article  CAS  PubMed  Google Scholar 

  33. Hanson SK, Wu RL, Silks LA (2012) C-C or C-O bond cleavage in a phenolic lignin model compound: selectivity depends on vanadium catalyst. Angew Chem Int Ed 51:3410–3413

    Article  CAS  Google Scholar 

  34. Lin SY, Dence CW (1992) Methods in lignin chemistry. Springer, Berlin

    Book  Google Scholar 

  35. Li JB, Gellerstedt G, Toven K (2009) Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour Technol 100:2556–2561

    Article  CAS  PubMed  Google Scholar 

  36. Samuel R, Pu YQ, Raman B, Ragauskas AJ (2010) Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Appl Biochem Biotechnol 162:62–74

    Article  CAS  PubMed  Google Scholar 

  37. Lai YZ, Guo XP (1991) Variation of the phenolic hydroxyl group content in wood lignins. Wood Sci Technol 25:467–472

    Article  CAS  Google Scholar 

  38. Robert DR, Bardet M, Gellerstedt G, Lindfors EL (1984) Structural changes in lignin during kraft cooking—3. On the structure of dissolved lignins. J Wood Chem Technol 4:239–263

    Article  CAS  Google Scholar 

  39. Gellerstedt G, Lindfors E (1984) Structural changes in lignin during kraft cooking—4. Phenolic hydroxyl groups in wood and kraft pulps. Svensk Papperstidn 87:R115–R118

    CAS  Google Scholar 

  40. Cedeno D, Bozell JJ (2012) Catalytic oxidation of para-substituted phenols with cobalt-Schiff base complexes/O2-selective conversion of syringyl and guaiacyl lignin models to benzoquinones. Tetrahedron Lett 53:2380–2383

    Article  CAS  Google Scholar 

  41. Caldin EF, Dagnall SP, Mak MKS, Brooke DN (1982) Kinetics of hydrogen-atom transfer from phenols to galvinoxyl in aprotic-solvents. Faraday Discuss 74:215–228

    Google Scholar 

  42. Bozell JJ, Hames BR, Dimmel DR (1995) Cobalt-Schiff base complex-catalyzed oxidation of para-substituted phenolics—preparation of benzoquinones. J Org Chem 60:2398–2404

    Article  CAS  Google Scholar 

  43. Kervinen K, Korpi H, Mesu JG, Soulimani F, Repo T, Rieger B, Leskela M, Weckhuysen BM (2005) Mechanistic insights into the oxidation of veratryl alcohol with Co(salen) and oxygen in aqueous media: an in-situ spectroscopic study. Eur. J. Inorg. Chem. 2591–2599

  44. Zombeck A, Drago RS, Corden BB, Gaul JH (1981) Activation of molecular-oxygen—mechanistic studies of the oxidation of hindered phenols with cobalt-dioxygen complexes. J Am Chem Soc 103:7580–7585

    Article  CAS  Google Scholar 

  45. Rajagopalan B, Cai H, Busch DH, Subramaniam B (2008) The catalytic efficacy of Co(salen)(AL) in O2 oxidation reactions in CO2-expanded solvent media: axial ligand dependence and substrate selectivity. Catal Lett 123:46–50

    Article  CAS  Google Scholar 

  46. Wu L-B, Hu Z-Q, Lai G-Q (2006) Synthesis and crystal structure of a Co(II) complex with Schiff base and imidazole ligand. Chin J Struct Chem 25:567–571

    CAS  Google Scholar 

  47. Elder T, Bozell JJ, Cedeno D (2013) The effect of axial ligand on the oxidation of syringyl alcohol by Co(salen) adducts. Phys Chem Chem Phys 15:7328–7337

    Article  CAS  PubMed  Google Scholar 

  48. Calligaris M, Minichelli D, Nardin G, Randaccio L (1970) Structural aspects of synthetic oxygen-carrier N, N'-ethylenebis-(salicylideneiminato)cobalt(II)-2. Crystal and molecular structure of monopyridine complex. J Chem Soc A 2411–2415

  49. Kennedy BJ, Fallon GD, Gatehouse B, Murray KS (1984) Spin-state differences and spin crossover in 5-coordinate Lewis base adducts of cobalt(II) Schiff-base complexes—structure of the high-spin (N, N'-ortho-phenylenebis(salicylaldiminato))cobalt(II)-2-methylimidazole adduct. Inorg Chem 23:580–588

    Article  CAS  Google Scholar 

  50. Drago RS, Corden BB (1980) Spin-pairing model of dioxygen binding and its application to various transition-metal systems as well as hemoglobin cooperativity. Acc Chem Res 13:353–360

    Article  CAS  Google Scholar 

  51. Biannic B, Bozell JJ (2013) Efficient cobalt-catalyzed oxidative conversion of lignin models to benzoquinones. Org Lett 15:2730–2733

    Article  CAS  PubMed  Google Scholar 

  52. da Silva EAB, Zabkova M, Araujo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodriques AE (2009) An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem Eng Res Des 87:1276–1292

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge that this work was supported by the US DOT Sun Grant program and as part of the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DESC0000997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Bozell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozell, J.J., Astner, A., Baker, D. et al. Integrating Separation and Conversion—Conversion of Biorefinery Process Streams to Biobased Chemicals and Fuels. Bioenerg. Res. 7, 856–866 (2014). https://doi.org/10.1007/s12155-014-9424-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9424-x

Keywords

Navigation