Skip to main content
Log in

Enhanced Production of 2,3-Butanediol in Recombinant Escherichia coli Using Response Regulator DR1558 Derived from Deinococcus radiodurans

  • Research Paper
  • Metabolic Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

2,3-Butanediol (2,3-BDO) is a promising bio-based chemical for its wide range of applications in industrial areas as synthetic rubber precursor, food additives, and cosmetics. In this study, Escherichia coli DH5α was metabolically engineered for enhanced production of 2,3-BDO by expressing Bacillus subtilis alsS, alsD, and ydjL genes encoding α-acetolactate synthase, α-acetolactate decarboxylase, and acetoin reductase/2,3 -butanediol dehydro¬genase, respectively, along with Deinococcus radiodurans dr1558 gene encoding a response regulator. When recombinant E. coli DH5α strain expressing only B. subtilis alsS, alsD, ydjL genes was cultured in LB medium containing 20 g/L glucose, 3.14 g/L of 2,3-BDO was produced. Additional expression of D. radiodurans dr1558 gene in E. coli DH5α expressing alsS, alsD, and ydjL genes resulted in the production of 7.81 g/L of 2,3-BDO under the same culture conditions, which is 2.5 fold higher than that produced by the strain without DR1558. Transcriptional analysis of E. coli DH5α expressing DR1558 suggested that the expression levels of the genes related to 2,3-BDO pathways were enhanced, while those of genes related to by-product pathways were suppressed, compared with control strain expressing only 2,3-BDO synthesis genes. These results strongly suggest that introduction of the stress tolerant response regulator DR1558 can modulate metabolic pathways to favor production of the target product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jang, Y. S., B. Kim, J. H. Shin, Y. J. Choi, S. Choi, C. W. Song, J. Lee, H. G. Park, and S. Y. Lee (2012) Bio-based production of C2-C6 platform chemicals. Biotechnol. Bioeng. 109: 2437–2459.

    CAS  PubMed  Google Scholar 

  2. Baritugo, K. A., H. T. Kim, Y. David, J. I. Choi, S. H. Hong, K. J. Jeong, J. H. Choi, J. C. Joo, and S. J. Park (2018) Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl. Microbiol. Biotechnol. 102: 3915–3937.

    CAS  PubMed  Google Scholar 

  3. Oh, Y. H., I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong, and S. J. Park (2015) Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean J. Chem. Eng. 32: 1945–1959.

    CAS  Google Scholar 

  4. Shin, H. Y., S. H. Shim, Y. J. Ryu, J. H. Yang, S. M. Lim, and C. G. Lee (2018) Lipid extraction from Tetraselmis sp. microalgae for biodiesel production using hexane-based solvent mixtures. Biotechnol. Bioprocess Eng. 23: 16–22.

    CAS  Google Scholar 

  5. Moon, Y. M., R. Gurav, J. Kim, Y. G. Hong, S. K. Bhatia, H. R. Jung, J. W. Hong, T. R. Choi, S. Y. Yang, H. Y. Park, H. S. Joo, and Y. H. Yang (2018) Whole-cell immobilization of engineered Escherichia coli JY001 with barium-alginate for itaconic acid production. Biotechnol. Bioprocess Eng. 23: 442–447.

    CAS  Google Scholar 

  6. Lee, J. W., T. Y. Kim, Y. S. Jang, S. Choi, and S.Y. Lee (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol. 29: 370–378.

    CAS  PubMed  Google Scholar 

  7. Becker, J. and C. Wittmann (2015) Advanced biotechnology: Metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl. 54: 3328–3350.

    CAS  PubMed  Google Scholar 

  8. Baritugo, K. A. G., H. T. Kim, Y. C. David, J. H. Choi, J. I. Choi, T. W. Kim, C. Park, S. H. Hong, J. G. Na, K. J. Jeong, J. C. Joo, and S. J. Park (2018) Recent advances in metabolic engineering of Corynebacterium glutamicum as a potential platform micro¬organism for biorefinery. Biofuel. Bioprod. Biorefin. 12: 899–925.

    CAS  Google Scholar 

  9. Choi, S. Y., S. J. Park, W. J. Kim, J. E. Yang, H. Lee, J. Shin, and S. Y. Lee (2016) One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat Biotechnol. 34: 435–440.

    CAS  PubMed  Google Scholar 

  10. Joo, J. C., A. N. Khusnutdinova, R. Flick, T. Kim, U. T. Bornscheuer, A. F. Yakunin, and R. Mahadevan (2017) Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chem. Sci. 8: 1406–1413.

    CAS  PubMed  Google Scholar 

  11. Erickson, B., J. E. Nelson, and P. Winters (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol. J. 7: 176–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding, S. and T. Tan (2006) L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem. 41: 1451–1454.

    CAS  Google Scholar 

  13. Borodina, I., K. R. Kildegaard, N. B. Jensen, T. H. Blicher, J. Maury, S. Sherstyk, K. Schneider, P. Lamosa, M. J. Herrgård, I. Rosenstand, F. Öberg, J. Forster, and J. Nielsen (2015) Establishing a synthetic pathway for high-level production of 3 -hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab. Eng. 27: 57–64.

    CAS  PubMed  Google Scholar 

  14. Park, S. J., T. W. Kim, M. K. Kim, S. Y. Lee, and S. C. Lim (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv. 30: 1196–1206.

    CAS  PubMed  Google Scholar 

  15. Raab, A. M., G. Gebhardt, N. Bolotina, D. Weuster-Botz, and C. Lang (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab. Eng. 12: 518–525.

    CAS  PubMed  Google Scholar 

  16. Song, H. and S. Y. Lee (2006) Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 39: 352–361.

    CAS  Google Scholar 

  17. Garde, A., G. Jonsson, A. S. Schmidt, and B. K. Ahring (2002) Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresour Technol. 81: 217–223.

    CAS  PubMed  Google Scholar 

  18. Berezina, O. V., N. V. Zakharova, A. Brandt, S. V. Yarotsky, W. H. Schwarz, and V. V. Zverlov (2010) Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl. Microbiol. Biotechnol. 87: 635–646.

    CAS  PubMed  Google Scholar 

  19. Atsumi, S., T. Y. Wu, E. M. Eckl, S. D. Hawkins, T. Buelter, and J. C. Liao (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol. 85: 651–657.

    CAS  PubMed  Google Scholar 

  20. Andreeßen, B., A. B. Lange, H. Robenek, and A. Steinbuchel (2010) Conversion of glycerol to poly (3-hydroxypropionate) in recombinant Escherichia coli. Appl. Environ. Microbiol. 76: 622–626.

    PubMed  Google Scholar 

  21. Ji, X. J., H. Huang, and P. K. Ouyang (2011) Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 29: 351–364.

    CAS  PubMed  Google Scholar 

  22. Winfield, M. E. (1950) The catalytic dehydration of 2, 3-butanediol to butadiene. II. Adsorption equilibria. Aust. J. Chem. 3: 290–305.

    Google Scholar 

  23. Multer, A., N. McGraw, K. Holm, and P. Vadlani (2013) Production of methyl ethyl ketone from biomass using a hybrid biochemical/catalytic approach. Lnd. Eng. Chem. Res. 52: 56–60.

    CAS  Google Scholar 

  24. De Faveri, D., P. Torre, F. Molinari, P. Perego, and A. Converti (2003) Carbon material balances and bioenergetics of 2, 3-butanediol bio-oxidation by Acetobacter hansenii. Enzyme Microb. Technol. 33: 708–719.

    Google Scholar 

  25. Xiao, Z. and P. Xu (2007) Acetoin metabolism in bacteria. Crit. Rev. Microbiol. 33: 127–140.

    CAS  PubMed  Google Scholar 

  26. Bartowsky, E. J. and P. A. Henschke (2004) The ‘buttery’ attribute of wine—diacetyl—desirability, spoilage and beyond. Int. J. Food Microbiol. 96: 235–252.

    CAS  PubMed  Google Scholar 

  27. Celihska, E. and W. Grajek (2009) Biotechnological production of 2, 3-butanediol—current state and prospects. Biotechnol. Adv. 27: 715–725.

    Google Scholar 

  28. Ng, C. Y., M. Y. Jung, J. Lee, and M. K. Oh (2012) Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb. Cell Fact. 11: 68.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, Y., H. Chu, C. Gao, F. Tao, Z. Zhou, K. Li, L. Li, C. Ma, and P. Xu (2014) Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab. Eng. 23: 22–33.

    CAS  PubMed  Google Scholar 

  30. Chu, H., B. Xin, P. Liu, Y. Wang, L. Li, X. Liu, X. Zhang, C. Ma, P. Xu, and C. Gao (2015) Metabolic engineering of Escherichia coli for production of (2S, 3S)-butane-2, 3-diol from glucose. Biotechnol. Biofuels. 8: 143.

    PubMed  PubMed Central  Google Scholar 

  31. Nicholson, W. L. (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2, 3-butanediol dehydrogenase. Appl. Environ. Microbiol. 74: 6832–6838.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nicolaou, S. A., S. M. Gaida, and E. T. Papoutsakis (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab. Eng. 12: 307–331.

    CAS  PubMed  Google Scholar 

  33. Zhang, Y., Y. Zhu, Y. Zhu, and Y. Li (2009) The importance of engineering physiological functionality into microbes. Trends Biotechnol. 27: 664–672.

    PubMed  Google Scholar 

  34. Chen, T., J. Wang, R. Yang, J. Li, M. Lin, and Z. Lin (2011) Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli. PLoS One. 6: e16228.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao, G., B. Tian, L. Liu, D. Sheng, B. Shen, and Y. Hua (2003) Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. DNA Repair. 2: 1419–1427.

    CAS  PubMed  Google Scholar 

  36. Pan, J., J. Wang, Z. Zhou, Y. Yan, W. Zhang, W. Lu, S. Ping, Q. Dai, M. Yuan, B. Feng, X. Hou, Y. Zhang, M. Ruiqiang, T. Liu, L. Feng, L. Wang, M. Chen, and M. Lin (2009) IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS One. 4: e4422.

    PubMed  PubMed Central  Google Scholar 

  37. Ma, R., Y. Zhang, H. Hong, W. Lu, M. Lin, M. Chen, and W. Zhang (2011) Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans. Curr Microbiol. 62: 659–664.

    CAS  PubMed  Google Scholar 

  38. Guo, S., X. Yi, W. Zhang, M. Wu, F. Xin, W. Dong, M. Zhang, J. Ma, H. Wu, and M. Jiang (2017) Inducing hyperosmotic stress resistance in succinate-producing Escherichia coli by using the response regulator DR1558 from Deinococcus radiodurans. Process Biochem. 61: 30–37.

    CAS  Google Scholar 

  39. Park, S. H., H. Singh, D. Appukuttan, S. Jeong, Y. J. Choi, J. H. Jung, I. Narumi, and S. Lim (2017) PprM, a cold shock domain-containing protein from Deinococcus radiodurans, confers oxidative stress tolerance to Escherichia coli. Front. Microbiol. 7: 2124.

    PubMed  PubMed Central  Google Scholar 

  40. Park, S. H., G. B. Kim, H. U. Kim, S. J. Park, and J. I. Choi (2019) Enhanced production of poly-3-hydroxybutyrate (PHB) by expression of response regulator DR1558 in recombinant Escherichia coli. Int. J. Biol. Macromol. 131: 29–35.

    CAS  PubMed  Google Scholar 

  41. Park, S. J., Y. A. Jang, H. Lee, A. R. Park, J. E. Yang, J. Shin, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee (2013) Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metab. Eng. 20: 20–28.

    CAS  PubMed  Google Scholar 

  42. Appukuttan, D., H. Singh, S. H. Park, J. H. Jung, S. Jeong, H. S. Seo, Y. J. Choi, and S. Lim (2016) Engineering synthetic multistress tolerance in Escherichia coli by using a Deinococcal response regulator, DR1558. Appl. Environ. Microbiol. 82: 1154–1166.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sambrook, J. and D. Russell (2001) Molecular Cloning: A Laboratory Manual. 3rd ed.. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY., USA.

    Google Scholar 

  44. Livak, K. J. and T. D. Schmittgen (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2—ΔΔCT method. Methods. 25: 402–408.

    CAS  PubMed  Google Scholar 

  45. Luli, G. W. and W. R. Strohl (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl. Environ. Microbiol. 56: 1004–1011.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Farmer, W. R. and J. C. Liao (1997) Reduction of aerobic acetate production by Escherichia coli. Appl. Environ. Microbiol. 63: 3205–3210.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Siddiquee, K. A., M. J. Arauzo-Bravo, and K. Shimiz (2004) Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli. FEMS Microbiol. Lett. 235: 25–33.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1D1A1B07049359), the Golden Seed Project Grant funded by Ministry of Oceans and Fisheries (213008-05-3-SB910), the Ewha Womans University Research Grant of 2017, and the supporting program by Chonnam Nation University (2019-3367).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si Jae Park or Jong-il Choi.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Materials

12257_2019_306_MOESM1_ESM.pdf

Enhanced Production of 2,3-Butanediol in Recombinant Escherichia coli Using Response Regulator DR1558 Derived from Deinococcus radiodurans

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SJ., Sohn, Y.J., Park, S.J. et al. Enhanced Production of 2,3-Butanediol in Recombinant Escherichia coli Using Response Regulator DR1558 Derived from Deinococcus radiodurans. Biotechnol Bioproc E 25, 45–52 (2020). https://doi.org/10.1007/s12257-019-0306-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0306-0

Keywords

Navigation