Skip to main content
Log in

Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum was adapted in a chemostat for 1,900 h with gradually increasing H2O2 stress to understand the oxidative stress response of an industrial host. After 411 generations of adaptation, C. glutamicum developed the ability to grow under stress of 10 mM H2O2, whereas the wild-type did not. The adapted strain also showed increased stress resistance to diamide and menadione, SDS, Tween 20, HCl, NaOH, and ampicillin. A total of 1,180 genes in the RNA-seq transcriptome analysis of the adapted strain were up-regulated twice or higher (corresponding to 38.6 % of the genome), and 126 genes were down-regulated half or less (4.1 % of genome) under 10 mM H2O2-stress conditions compared with those of the wild-type under a no stress condition. Especially the aromatic compound-degrading gene clusters (vanRABK, pcaJIRFLO, and benABCDRKE) were more than threefold up-regulated. Plausible reasons for the H2O2-stress tolerance of the adapted strain are discussed as well as the potential strategy for development of oxidative stress-tolerant strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461(7268):1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Brinkrolf K, Brune I, Tauch A (2006) Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Genet Mol Res 5(4):773–789

    PubMed  Google Scholar 

  • Brinkrolf K, Schröder J, Pühler A, Tauch A (2010) The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production. J Biotechnol 149(3):173–182

    Article  PubMed  CAS  Google Scholar 

  • Bussmann M, Baumgart M, Bott M (2010) RosR (Cg1324), a hydrogen peroxide-sensitive MarR-type transcriptional regulator of Corynebacterium glutamicum. J Biol Chem 285(38):29305–29318

    Article  PubMed  CAS  Google Scholar 

  • Civolani C, Barghini P, Roncetti AR, Ruzzi M, Schiesser A (2000) Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13. Appl Environ Microbiol 66(6):2311–2317

    Article  PubMed  CAS  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press Talyor & Francis Group, London

  • Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55(4):561–585

    PubMed  CAS  Google Scholar 

  • Flora SJ, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7(7):2745–2788

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201(8):1203–1209

    PubMed  CAS  Google Scholar 

  • Haußmann U, Qi S-W, Wolters D, Rögner M, Liu S-J, Poetsch A (2009) Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source: a membrane proteome-centric view. Proteomics 9(14):3635–3651

    Article  PubMed  Google Scholar 

  • Hibi M, Sonoki T, Mori H (2005) Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway. FEMS Microbiol Lett 253(2):237–242

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–4):5–25

    Article  PubMed  CAS  Google Scholar 

  • Kwon Y-D, Kim S, Lee SY, Kim P (2011) Long-term continuous adaptation of Escherichia coli to high succinate stress and transcriptome analysis of the tolerant strain. J Biosci Bioeng 111(1):26–30

    Article  PubMed  CAS  Google Scholar 

  • Lee J-Y, Park J-S, Kim H-J, Kim Y, Lee H-S (2012) Corynebacterium glutamicum whcB, a stationary phase-specific regulatory gene. FEMS Microbiol Lett 327(2):103–109

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Harvey LM, McNeil B (2009) Oxidative stress in industrial fungi. Crit Rev Biotechnol 29(3):199–213

    Article  PubMed  CAS  Google Scholar 

  • Liebl W, Klamer R, Schleifer K-H (1989) Requirement of chelating compounds for the growth of Corynebacterium glutamicum in synthetic media. Appl Microbiol Biotechnol 32(2):205–210

    Article  CAS  Google Scholar 

  • Nakunst D, Larisch C, Hüser AT, Tauch A, Pühler A, Kalinowski J (2007) The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol 189(13):4696–4707

    Article  PubMed  CAS  Google Scholar 

  • Neuweger H, Persicke M, Albaum S, Bekel T, Dondrup M, Huser A, Winnebald J, Schneider J, Kalinowski J, Goesmann A (2009) Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example. BMC Sys Biol 3(1):82

    Article  Google Scholar 

  • Park S-D, Youn J-W, Kim Y-J, Lee S-M, Kim Y, Lee H-S (2008) Corynebacterium glutamicum σE is involved in responses to cell surface stresses and its activity is controlled by the anti-σ factor CseE. Microbiology 154(3):915–923

    Article  PubMed  CAS  Google Scholar 

  • Phattarasukol S, Radey MC, Lappala CR, Oda Y, Hirakawa H, Brittnacher MJ, Harwood CS (2012) Identification of a p-coumarate degradation regulon in Rhodopseudomonas palustris by Xpression, an integrated tool for prokaryotic RNA-seq data processing. Appl Environ Microbiol 78(19):6812–6818

    Article  PubMed  CAS  Google Scholar 

  • Portnoy VA, Bezdan D, Zengler K (2011) Adaptive laboratory evolution–harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 22(4):590–594

    Article  PubMed  CAS  Google Scholar 

  • Schroder J, Tauch A (2010) Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34(5):685–737

    PubMed  Google Scholar 

  • Shen X-H, Zhou N-Y, Liu S-J (2012) Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 95(1):77–89

    Article  PubMed  CAS  Google Scholar 

  • Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2(2):188–194

    Article  PubMed  CAS  Google Scholar 

  • von der Osten CH, Gioannetti C, Sinskey AJ (1989) Design of a defined medium for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake. Biotechnol Lett 11(1):11–16

    Article  Google Scholar 

  • Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124(1):74–92

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Wang SY (2001) Antioxidant activity and phenolic Compounds in selected herbs. J Agri Food Chem 49(11):5165–5170

    Article  CAS  Google Scholar 

  • Zhu YZ, Huang SH, Tan BKH, Sun J, Whiteman M, Zhu YC (2004) Antioxidants in Chinese herbal medicines: a biochemical perspective. Nat Prod Rep 21(4):478–489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Korean Ministry of Education, Science, and Technology (MEST 2010-0021994 Program of the NRF). The authors extend their appreciation to Prof. Harwood and Dr. Oda (University of Washington) for helping with the RNA-seq analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pil Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JY., Seo, J., Kim, ES. et al. Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol Lett 35, 709–717 (2013). https://doi.org/10.1007/s10529-012-1135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1135-9

Keywords

Navigation