Skip to main content
Log in

Development of Microtiter Plate Culture Method for Rapid Screening of ε-Poly-L-Lysine-Producing Strains

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

ε-Poly-l-lysine (ε-PL) produced by Streptomyces albulus possesses a broad spectrum of antimicrobial activity and is widely used as a food preservative. To extensively screen ε-PL-overproducing strain, we developed an integrated high-throughput screening assay using ribosome engineering technology. The production protocol was scaled down to 24- and 48-deep-well microtiter plates (MTPs). The microplate reader assay was used to monitor ε-PL production. A good correlation was observed between the fermentation results obtained in both 24-(48)-deep-well MTPs and conventional Erlenmeyer flasks. Using this protocol, the production of ε-PL in an entire MTP was determined in <5 min without compromising on accuracy. The high-yielding strain selected through this protocol was also tested in Erlenmeyer flasks. The result showed that the ε-PL production of the high-yielding mutants was nearly 45% higher than that of the parent stain. Thus, development of this protocol is expected to accelerate the selection of ε-PL-overproducing strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shima, S., & Sakai, H. (1977). Polylysine produced by Streptomyces. Agricultural and Biological Chemistry, 41, 1807–1809.

    CAS  Google Scholar 

  2. Shima, S., & Sakai, H. (1981). Poly-L-lysine produced by Streptomyces. Part II. Taxonomy and fermentation studies. Agricultural and Biological Chemistry, 45, 2497–2502.

    CAS  Google Scholar 

  3. Shima, S., & Sakai, H. (1981). Poly-L-lysine produced by Streptomyces. Part III. Chemical studies. Agricultural and Biological Chemistry, 45, 2503–2508.

    CAS  Google Scholar 

  4. Hiraki, J., Ichikawa, T., Ninomiya, S.-I., Seki, H., Uohama, K., Seki, H., Kimura, S., Yanagimoto, Y., & Barnett, J. W. (2003). Use of ADME studies to confirm the safety of ε-polylysine as a preservative in food. Regulatory Toxicology and Pharmacology, 37, 328–340.

    Article  CAS  Google Scholar 

  5. Hosoya, Y., Okamoto, S., Muramatsu, H., & Ochi, K. (1998). Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrobial Agents and Chemotherapy, 42, 2041–2047.

    CAS  Google Scholar 

  6. Shih, L., Shen, M. H., & Van, Y. T. (2006). Microbial synthesis of poly (ε-lysine) and its various applications. Bioresource Technology, 97, 1148–1159.

    Article  CAS  Google Scholar 

  7. Shima, S., MATSUOKA, H., IWAMOTO, T., & SAKAI, H. (1984). Antimicrobial action of ε-poly-L-lysine. The Journal of Antibiotics, 37, 1449–1455.

    Article  CAS  Google Scholar 

  8. Bankar, S. B., & Singhal, R. S. (2013). Panorama of poly-ε-lysine. RSC Advances, 3, 8586–8603.

    Article  CAS  Google Scholar 

  9. Ren, X. D., Chen, X. S., Tang, L., Sun, Q. X., Zeng, X., & Mao, Z. G. (2015). Efficient production of ε-poly-l-lysine from agro-industrial by-products by Streptomyces sp. M-Z18. Annals of Microbiology, 65, 733–743.

    Article  CAS  Google Scholar 

  10. Li, S., Li, F., Chen, X. S., Wang, L., Xu, J., Tang, L., & Mao, Z. G. (2012). Genome shuffling enhanced ε-poly-l-lysine production by improving glucose tolerance of Streptomyces graminearus. Applied Biochemistry and Biotechnology, 166, 414–423.

    Article  CAS  Google Scholar 

  11. Zong, H., Zhan, Y., Li, X., Peng, L., Feng, F., & Li, D. (2012). A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. African Journal of Microbiology Research, 6, 3154–3158.

    CAS  Google Scholar 

  12. Büchs, J. (2001). Introduction to advantages and problems of shaken cultures. Biochemical Engineering Journal, 7, 91–98.

    Article  Google Scholar 

  13. Du Toit, E., & Rautenbach, M. (2000). A sensitive standardised micro-gel well diffusion assay for the determination of antimicrobial activity. Journal of Microbiological Methods, 42, 159–165.

    Article  CAS  Google Scholar 

  14. Duetz, W. A., Rüedi, L., Hermann, R., O'Connor, K., Büchs, J., & Witholt, B. (2000). Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Applied and Environmental Microbiology, 66, 2641–2646.

    Article  CAS  Google Scholar 

  15. Kumar, M. S., Kumar, P. M., Sarnaik, H. M., & Sadhukhan, A. (2000). A rapid technique for screening of lovastatin-producing strains of Aspergillus terreus by agar plug and Neurospora crassa bioassay. Journal of Microbiological Methods, 40, 99–104.

    Article  CAS  Google Scholar 

  16. Itzhaki, R. F. (1972). Colorimetric method for estimating polylysine and polyarginine. Analytical Biochemistry, 50, 569–574.

    Article  CAS  Google Scholar 

  17. Wang, L., Chen, X., Wu, G., Zeng, X., Ren, X., Li, S., Tang, L., & Mao, Z. (2016). Genome shuffling and gentamicin-resistance to improve ε-poly-l-lysine productivity of Streptomyces albulus W-156. Applied Biochemistry and Biotechnology, 180, 1601–1617.

    Article  CAS  Google Scholar 

  18. Xu, Z. N., Shen, W. H., Chen, X. Y., Lin, J. P., & Cen, P. L. (2005). A high-throughput method for screening of rapamycin-producing strains of Streptomyces hygroscopicus by cultivation in 96-well microtiter plates. Biotechnology Letters, 27, 1135–1140.

    Article  CAS  Google Scholar 

  19. Gao, H., Liu, M., Zhou, X., Liu, J., Zhuo, Y., Gou, Z., Xu, B., Zhang, W., Liu, X., Luo, A., Zheng, C., Chen, X., & Zhang, L. (2010). Identification of avermectin-high-producing strains by high-throughput screening methods. Applied Microbiology and Biotechnology, 85, 1219–1225.

    Article  CAS  Google Scholar 

  20. Ringel, A. K., Wilkens, E., Hortig, D., Willke, T., & Vorlop, K. D. (2012). An improved screening method for microorganisms able to convert crude glycerol to 1,3-propanediol and to tolerate high product concentrations. Applied Microbiology and Biotechnology, 93, 1049–1056.

    Article  CAS  Google Scholar 

  21. Zeng, W., Lin, Y., Qi, Z., He, Y., Wang, D., Chen, G., & Liang, Z. (2013). An integrated high-throughput strategy for rapid screening of poly(gamma-glutamic acid)-producing bacteria. Applied Microbiology and Biotechnology, 97, 2163–2172.

    Article  CAS  Google Scholar 

  22. Tan, J., Chu, J., Hao, Y., Guo, Y., Zhuang, Y., & Zhang, S. (2013). High-throughput system for screening of cephalosporin C high-yield strain by 48-deep-well microtiter plates. Applied Biochemistry and Biotechnology, 169, 1683–1695.

    Article  CAS  Google Scholar 

  23. Wood, J. A., Orr, V. C. A., Luque, L., Nagendra, V., Berruti, F., & Rehmann, L. (2014). High-throughput screening of inhibitory compounds on growth and ethanol production of Saccharomyces cerevisiae. Bioenergy Research, 8, 423–430.

    Article  Google Scholar 

  24. Shi, F., Tan, J., Chu, J., Wang, Y., Zhuang, Y., & Zhang, S. (2015). A qualitative and quantitative high-throughput assay for screening of gluconate high-yield strains by Aspergillus niger. Journal of Microbiological Methods, 109, 134–139.

    Article  CAS  Google Scholar 

  25. Zeng, W., Du, G., Chen, J., Li, J., & Zhou, J. (2015). A high-throughput screening procedure for enhancing α-ketoglutaric acid production in Yarrowia lipolytica by random mutagenesis. Process Biochemistry, 50, 1516–1522.

    Article  CAS  Google Scholar 

  26. Nishikawa, M., & Ogawa, K. i. (2002). Distribution of microbes producing antimicrobial ε-poly-L-lysine polymers in soil microflora determined by a novel method. Applied and Environmental Microbiology, 68, 3575–3581.

    Article  CAS  Google Scholar 

  27. Hiraki, J., Hatakeyama, M., Morita, H., & Izumi, Y. (1998). Improved epsilon-poly-L-lysine production of an S-(2-aminoethyl)-L-cysteine resistant mutant of Streptomyces albulus. Seibutsu-kogaku Kaishi, 76, 487–493.

    CAS  Google Scholar 

  28. Wang, L., Chen, X., Wu, G., Li, S., Zeng, X., Ren, X., Tang, L., & Mao, Z. (2017). Enhanced ε-poly-L-lysine production by inducing double antibiotic-resistant mutations in Streptomyces albulus. Bioprocess and Biosystems Engineering, 40, 271–283.

    Article  CAS  Google Scholar 

  29. Wang, G., Inaoka, T., Okamoto, S., & Ochi, K. (2009). A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrobial Agents and Chemotherapy, 53, 1019–1026.

    Article  CAS  Google Scholar 

  30. Li, S., Chen, X., Dong, C., Zhao, F., Tang, L., & Mao, Z. (2013). Combining genome shuffling and interspecific hybridization among Streptomyces improved epsilon-poly-L-lysine production. Applied Biochemistry and Biotechnology, 169, 338–350.

    Article  CAS  Google Scholar 

  31. Minas, W., Bailey, J. E., & Duetz, W. (2000). Streptomycetes in micro-cultures: growth, production of secondary metabolites, and storage and retrieval in the 96-well format. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 78, 297–305.

    Article  CAS  Google Scholar 

  32. Hobbs, G., Frazer, C. M., Gardner, D. C. J., Flett, F., & Oliver, S. G. (1990). Pigmented antibiotic production by Streptomyces coelicolor A3(2) kinetics and the influence of nutrients. Journal of General and Applied Microbiology, 136, 2291–2296.

    Article  CAS  Google Scholar 

  33. Liao, X., Vining, L. C., & Doull, J. L. (1995). Physiological control of trophophase-idiophase separation in streptomycete cultures producing secondary metabolites. Canadian Journal of Microbiology, 41, 309–315.

    Article  CAS  Google Scholar 

  34. Melzoch, K., Teixeira de Mattos, M. J., & Neijssel, O. M. (1997). Production of actinorhodin by Streptomyces coelicolor A3(2) grown in chemostat culture. Biotechnology and Bioengineering, 54, 577–582.

    Article  CAS  Google Scholar 

  35. Whitaker, A. (1992). Actinomycetes in submerged culture. Applied Biochemistry and Biotechnology, 32, 23–35.

    Article  CAS  Google Scholar 

  36. Isett, K., George, H., Herber, W., & Amanullah, A. (2007). Twenty-four-well plate miniature bioreactor high-throughput system: assessment for microbial cultivations. Biotechnology and Bioengineering, 98, 1017–1028.

    Article  CAS  Google Scholar 

  37. Hermann, R., Lehmann, M., & Buchs, J. (2003). Characterization of gas–liquid mass transfer phenomena in microtiter plates. Bioprocess and Biosystems Engineering, 81, 178–186.

    CAS  Google Scholar 

  38. Zimmermann, H. F., John, G. T., Trauthwein, H., Dingerdissen, U., & Huthmacher, K. (2003). Rapid evaluation of oxygen and water permeation through microplate sealing tapes. Biotechnology Progress, 19, 1061–1063.

    Article  CAS  Google Scholar 

  39. Kurosawa, K., Hosaka, T., Tamehiro, N., Inaoka, T., & Ochi, K. (2006). Improvement of alpha-amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168. Applied and Environmental Microbiology, 72, 71–77.

    Article  CAS  Google Scholar 

  40. Shima, J., Hesketh, A., Okamoto, S., Kawamoto, S., & Ochi, K. (1996). Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3 (2). Journal of Bacteriology, 178, 7276–7284.

    Article  CAS  Google Scholar 

  41. Hosokawa, K., Park, N. H., Inaoka, T., Itoh, Y., & Ochi, K. (2002). Streptomycin-resistant (rpsL) or rifampicin-resistant (rpoB) mutation in Pseudomonas putida KH146-2 confers enhanced tolerance to organic chemicals. Environmental Microbiology, 4, 703–712.

    Article  CAS  Google Scholar 

  42. Liu, Z., Zhao, X., & Bai, F. (2013). Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Applied Microbiology and Biotechnology, 97, 4361–4368.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cooperation Project of Jiangsu Province among Industries, Universities and Institutes (BY2016022-25), the Program of the National Natural Science Foundation of China (31671846,31301556), and the Jiangsu Province Collaborative Innovation Center for Advanced Industrial Fermentation Industry Development Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Sheng Chen or Zhong-Gui Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YJ., Chen, XS., Zhao, JJ. et al. Development of Microtiter Plate Culture Method for Rapid Screening of ε-Poly-L-Lysine-Producing Strains. Appl Biochem Biotechnol 183, 1209–1223 (2017). https://doi.org/10.1007/s12010-017-2493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2493-5

Keywords

Navigation