Skip to main content
Log in

Enhanced ε-poly-l-lysine production by inducing double antibiotic-resistant mutations in Streptomyces albulus

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

ε-Poly-l-lysine (ε-PL), as a food additive, has been widely used in many countries. However, its production still needs to be improved. We successfully enhanced ε-PL production of Streptomyces albulus FEEL-1 by introducing mutations related to antibiotics, such as streptomycin, gentamicin, and rifampin. Single- and double-resistant mutants (S-88 and SG-31) were finally screened with the improved ε-PL productions of 2.81 and 3.83 g/L, 1.75- to 2.39-fold compared with that of initial strain FEEL-1. Then, the performances of mutants S-88 and SG-31 were compared with the parent strain FEEL-1 in a 5-L bioreactor under the optimal condition for ε-PL production. After 174-h fed-batch fermentation, the ε-PL production and productivity of hyper-strain SG-31 reached the maximum of 59.50 g/L and 8.21 g/L/day, respectively, which was 138 and 105% higher than that of FEEL-1. Analysis of streptomycin-resistant mutants demonstrated that a point mutation occurred in rpsL gene (encoding the ribosomal protein S12). These single and double mutants displayed remarkable increases of the activities and transcriptional levels of key enzymes in ε-PL biosynthesis pathway, which may be responsible for the enhanced mycelia viability, respiratory activity, and ε-PL productions of SG-31. These results showed that the new breeding method, called ribosome engineering, could be a novel and effective breeding strategy for the evolution of ε-PL-producing strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shima S, Sakai H (1981) Poly-l-lysine produced by Streptomyces. Part II.Taxonomy and fermentation studies. Agric Biol Chem 45:2497–2502

    CAS  Google Scholar 

  2. Shima S, Sakai H (1981) Poly-l-lysine produced by Streptomyces. Part III.Chemical studies. Agric Biol Chem 45:2503–2508

    CAS  Google Scholar 

  3. Shima S, Matsuoka H, Iwamoto T, Sakai H (1984) Antimicrobial action of epsilon-poly-l-lysine. J Antibiot 37(11):1449–1455

    Article  CAS  Google Scholar 

  4. Chen XS, Ren XD, Dong N, Li S, Li F, Zhao FL, Tang L, Zhang JH, Mao ZG (2012) Culture medium containing glucose and glycerol as a mixed carbon source improves epsilon-poly-l-lysine production by Streptomyces sp M-Z18. Bioproc Biosyst Eng 35(3):469–475. doi:10.1007/s00449-011-0586-z

    Article  CAS  Google Scholar 

  5. Shima S, Sakai H (1977) Polylysine produced by Streptomyces. Agric Biol Chem 41

  6. Zhang Y, Feng XH, Xu H, Yao Z, Ouyang PK (2010) epsilon-Poly-l-lysine production by immobilized cells of Kitasatospora sp MY 5-36 in repeated fed-batch cultures. Bioresour Technol 101(14):5523–5527. doi:10.1016/j.biortech.2010.02.021

    Article  CAS  Google Scholar 

  7. Geng W, Yang C, Gu Y, Liu R, Guo W, Wang X, Song C, Wang S (2014) Cloning of ε-poly-l-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans. Microb Biotechnol 7(2):155–164. doi:10.1111/1751-7915.12108

    Article  CAS  Google Scholar 

  8. Li S, Tang L, Chen XS, Liao LJ, Li F, Mao ZG (2011) Isolation and characterization of a novel epsilon-poly-l-lysine producing strain: Streptomyces griseofuscus. J Ind Microbiol Biot 38(4):557–563. doi:10.1007/s10295-010-0803-9

    Article  CAS  Google Scholar 

  9. Xia J, Xu H, Feng XH, Xu ZX, Chi B (2013) Poly(l-diaminopropionic acid), a novel non-proteinic amino acid oligomer co-produced with poly (epsilon-l-lysine) by Streptomyces albulus PD-1. Appl Microbiol Biot 97(17):7597–7605. doi:10.1007/s00253-013-4936-4

    Article  CAS  Google Scholar 

  10. Hiraki J, Masakazu H, Hiroshi M, Yoshikazu I (1998) Improved ε-Poly-l-Lysine production of an S-(2-Aminoethyl)-l-cysteine resistant mutant of Streptomyces albulus. Seibutsu Kogakkaishi 76:487–493

    CAS  Google Scholar 

  11. Kahar P, Iwata T, Hiraki J, Park EY, Okabe M (2001) Enhancement of epsilon-polylysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng 91(2):190–194. doi:10.1263/Jbb.91.190

    Article  CAS  Google Scholar 

  12. Ren XD, Chen XS, Zeng X, Wang L, Tang L, Mao ZG (2015) Acidic pH shock induced overproduction of epsilon-poly-l-lysine in fed-batch fermentation by Streptomyces sp M-Z18 from agro-industrial by-products. Bioproc Biosyst Eng 38(6):1113–1125. doi:10.1007/s00449-015-1354-2

    Article  CAS  Google Scholar 

  13. Xu Z, Cao C, Sun Z, Li S, Xu Z, Feng X, Xu H (2015) Construction of a genetic system for Streptomyces albulus PD-1 and improving Poly(epsilon-l-lysine) production through expression of vitreoscilla hemoglobin. J Microbiol Biotechnol 25(11):1819–1826. doi:10.4014/jmb.1506.06084

    Article  CAS  Google Scholar 

  14. Gu Y, Wang X, Yang C, Geng W, Feng J, Wang Y, Wang S, Song C (2015) Effects of chromosomal integration of the vitreoscilla hemoglobin gene (vgb) and s-adenosylmethionine synthetase gene (metK) on ε-poly-l-lysine synthesis in Streptomyces albulus NK660. Appl Biochem Biotechnol. doi:10.1007/s12010-015-1958-7

    Google Scholar 

  15. Li S, Chen XS, Dong CL, Zhao FL, Tang L, Mao ZG (2013) Combining genome shuffling and interspecific hybridization among Streptomyces improved epsilon-poly-l-lysine production. Appl Biochem Biotech 169(1):338–350. doi:10.1007/s12010-012-9969-0

    Article  CAS  Google Scholar 

  16. Zhou YP, Ren XD, Wang L, Chen XS, Mao ZG, Tang L (2015) Enhancement of epsilon-poly-lysine production in epsilon-poly-lysine-tolerant Streptomyces sp by genome shuffling. Bioproc Biosyst Eng 38(9):1705–1713. doi:10.1007/s00449-015-1410-y

    Article  CAS  Google Scholar 

  17. Wang L, Chen XS, Wu GY, Li S, Zeng X, Ren XD, Tang L, Mao ZG (2015) Improved epsilon-poly-l-lysine production of Streptomyces sp FEEL-1 by atmospheric and room temperature plasma mutagenesis and streptomycin resistance screening. Ann Microbiol 65(4):2009–2017. doi:10.1007/s13213-015-1039-8

    Article  CAS  Google Scholar 

  18. Li S, Li F, Chen XS, Wang L, Xu J, Tang L, Mao ZG (2012) Genome shuffling enhanced epsilon-poly-l-lysine production by improving glucose tolerance of Streptomyces graminearus. Appl Biochem Biotech 166(2):414–423. doi:10.1007/s12010-011-9437-2

    Article  CAS  Google Scholar 

  19. Chen XS, Ren XD, Zeng X, Zhao FL, Tang L, Zhang HJ, Zhang JH, Mao ZG (2013) Enhancement of epsilon-poly-l-lysine production coupled with precursor l-lysine feeding in glucose-glycerol co-fermentation by Streptomyces sp M-Z18. Bioproc Biosyst Eng 36(12):1843–1849. doi:10.1007/s00449-013-0958-7

    Article  CAS  Google Scholar 

  20. Chen XS, Mao ZG (2013) Comparison of glucose and glycerol as carbon sources for epsilon-poly-l-lysine production by Streptomyces sp M-Z18. Appl Biochem Biotech 170(1):185–197. doi:10.1007/s12010-013-0167-5

    Article  CAS  Google Scholar 

  21. Morris CN, Ainsworth S, Kinderlerer J (1986) The regulatory properties of yeast pyruvate kinase. Effect of fructose 1,6-bisphosphate. Biochem J 234(3):691–698

    Article  CAS  Google Scholar 

  22. Xia J, Xu Z, Xu H, Feng X, Bo F (2014) The regulatory effect of citric acid on the co-production of poly(epsilon-lysine) and poly(L-diaminopropionic acid) in Streptomyces albulus PD-1. Bioproc Biosyst Eng 37(10):2095–2103. doi:10.1007/s00449-014-1187-4

    Article  CAS  Google Scholar 

  23. Xu Z, Bo F, Xia J, Sun Z, Li S, Feng X, Xu H (2015) Effects of oxygen-vectors on the synthesis of epsilon-poly-lysine and the metabolic characterization of Streptomyces albulus PD-1. Biochem Eng J 94:58–64. doi:10.1016/j.bej.2014.11.009

    Article  CAS  Google Scholar 

  24. Zeng X, Chen XS, Ren XD, Liu QR, Wang L, Sun QX, Tang L, Mao ZG (2014) Insights into the role of glucose and glycerol as a mixed carbon source in the improvement of epsilon-poly-l-lysine productivity. Appl Biochem Biotech 173(8):2211–2224. doi:10.1007/s12010-014-1026-8

    Article  CAS  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  26. Winding A, Binnerup SJ, Sorensen J (1994) Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl Environ Microb 60(8):2869–2875

    CAS  Google Scholar 

  27. Rioseras B, Lopez-Garcia MT, Yague P, Sanchez J, Manteca A (2014) Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production. Bioresour Technol 151:191–198. doi:10.1016/j.biortech.2013.10.068

    Article  CAS  Google Scholar 

  28. Singh KP, Mahendra AL, Jayaraj V, Wangikar PP, Jadhav S (2013) Distribution of live and dead cells in pellets of an actinomycete Amycolatopsis balhimycina and its correlation with balhimycin productivity. J Ind Microbiol Biot 40(2):235–244. doi:10.1007/s10295-012-1215-9

    Article  CAS  Google Scholar 

  29. Ren XD, Chen XS, Tang L, Zeng X, Wang L, Mao ZG (2015) Physiological mechanism of the overproduction of epsilon-poly-l-lysine by acidic pH shock in fed-batch fermentation. Bioproc Biosyst Eng 38(11):2085–2094. doi:10.1007/s00449-015-1448-x

    Article  CAS  Google Scholar 

  30. Itzhaki RF (1972) Colorimetric method for estimating polylysine and polyarginine. Anal biochemi 50(2):569–574. doi:10.1016/0003-2697(72)90067-x

    Article  CAS  Google Scholar 

  31. Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178(24):7276–7284

    Article  CAS  Google Scholar 

  32. Hosoya Y, Okamoto S, Muramatsu H, Ochi K (1998) Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 42(8):2041–2047

    CAS  Google Scholar 

  33. Ochi K (2007) From microbial differentiation to ribosome engineering. Biosci Biotech Bioch 71(6):1373–1386. doi:10.1271/bbb.70007

    Article  CAS  Google Scholar 

  34. Hu HF, Zhang Q, Zhu BQ (2008) Enhanced antibiotic production by inducing low level of resistance to gentamicin. Chin J Nat Med 6(2):146–152

    Article  CAS  Google Scholar 

  35. Hu HF, Ochi K (2001) Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microb 67(4):1885–1892. doi:10.1128/Aem.67.4.1885-1892.2001

    Article  CAS  Google Scholar 

  36. Wang GJ, Hosaka T, Ochi K (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microb 74(9):2834–2840. doi:10.1128/Aem.02800-07

    Article  CAS  Google Scholar 

  37. Ren XD, Xu YJ, Zeng X, Chen XS, Tang L, Mao ZG (2015) Microparticle-enhanced production of epsilon-poly-l-lysine in fed-batch fermentation. Rsc Adv 5(100):82138–82143. doi:10.1039/c5ra14319e

    Article  CAS  Google Scholar 

  38. Wang L, Gao CH, Tang N, Hu SN, Wu QF (2015) Identification of genetic variations associated with epsilon-poly-lysine biosynthesis in Streptomyces albulus ZPM by genome sequencing. Sci Rep-Uk. doi:10.1038/Srep09201

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Cooperation Project of Jiangsu Province among Industries, Universities and Institutes (BY2016022-25), the Innovation Plan of Jiangsu Province (KYLX15_1146), National Natural Science Foundation of China (21376106), the Fundamental Research Funds for the Central Universities (JUSRP51504), the Open Project Program of the Key Laboratory of Industrial Biotechnology, Ministry of Education, China (KLIBKF201302), the Jiangsu Province Collaborative Innovation Center for Advanced Industrial Fermentation Industry Development Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xusheng Chen or Zhonggui Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chen, X., Wu, G. et al. Enhanced ε-poly-l-lysine production by inducing double antibiotic-resistant mutations in Streptomyces albulus . Bioprocess Biosyst Eng 40, 271–283 (2017). https://doi.org/10.1007/s00449-016-1695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1695-5

Keywords

Navigation