Skip to main content
Log in

Genome Shuffling and Gentamicin-Resistance to Improve ε-Poly-l-Lysine Productivity of Streptomyces albulus W-156

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Genome shuffling has been a recently effective method for screening the desirable phenotypes of industrial strains. Here, we combined genome shuffling and gentamicin resistance to improve the production of ε-poly-l-lysine in Streptomyces albulus W-156. Five starting mutants with higher ε-poly-l-lysine (ε-PL) productivities were firstly obtained by atmospheric and room temperature plasma (ARTP) mutagenesis. After three rounds of genome shuffling with increasing concentration of gentamicin for selection, S. albulus AG3-28, was finally got with a production of 3.43 g/L in shaking flask. In a 5-L fermenter, AG3-28 exhibited a higher ε-PL productivity (56.5 g/L) than the initial strain W-156 (37.5 g/L). Key enzyme activities in primary and secondary metabolic pathways were analyzed, and the transcription levels of hrdD and pls were determined by quantitative real time-polymerase chain reaction (qRT-PCR). Increase of key enzyme activities and the upregulation of the gene transcriptional levels demonstrated that ε-PL synthetic pathway in AG3-28 was obviously strengthened, which might be responsible for the high productivity. Moreover, hyper-yield strain AG3-28 was found to produce a slightly lower ε-PL polymerization degree than the parent strain. Amplified fragment length polymorphism (AFLP) analysis reflects the genetic diversity among the derivates after genome shuffling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shima, S., Matsuoka, H., Iwamoto, T., & Sakai, H. (1984). Antimicrobial action of epsilon-poly-L-lysine. Journal of Antibiotics, 37, 1449–1455.

    Article  CAS  Google Scholar 

  2. Shima, S., & Sakai, H. (1981). Poly-L-lysine produced by Streptomyces. Part II. Taxonomy and fermentation studies. Agricultural and Biological Chemistry, 45, 2497–2502.

    CAS  Google Scholar 

  3. Shima, S., & Sakai, H. (1981). Poly-L-lysine produced by Streptomyces. Part III. Chemical studies. Agricultural and Biological Chemistry, 45, 2503–2508.

    CAS  Google Scholar 

  4. Shima, S. and Sakai, H. (1977) Polylysine produced by Streptomyces. Agric Biol Chem 41.

  5. Li, S., Tang, L., Chen, X. S., Liao, L. J., Li, F., & Mao, Z. G. (2011). Isolation and characterization of a novel epsilon-poly-L-lysine producing strain: Streptomyces griseofuscus. Journal of Industrial Microbiology and Biotechnology, 38, 557–563.

    Article  CAS  Google Scholar 

  6. Zhang, Y., Feng, X. H., Xu, H., Yao, Z., & Ouyang, P. K. (2010). Epsilon-Poly-L-lysine production by immobilized cells of Kitasatospora sp. MY 5-36 in repeated fed-batch cultures. Bioresource Technology, 101, 5523–5527.

    Article  CAS  Google Scholar 

  7. Geng, W., Yang, C., Gu, Y., Liu, R., Guo, W., Wang, X., Song, C., & Wang, S. (2014). Cloning of ε-poly-L-lysine ( e-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans. Microbial Biotechnology, 7, 155–164.

    Article  CAS  Google Scholar 

  8. Xia, J., Xu, H., Feng, X., Xu, Z., & Chi, B. (2013). Poly (l-diaminopropionic acid), a novel non-proteinic amino acid oligomer co-produced with poly (epsilon-l-lysine) by Streptomyces albulus PD-1. Applied Microbiology Biotechnology, 97, 7597–7605.

    Article  CAS  Google Scholar 

  9. Chen, X. S., Li, S., Liao, L. J., Ren, X. D., Li, F., Tang, L., Zhang, J. H., & Mao, Z. G. (2011). Production of epsilon-poly-l-lysine using a novel two-stage pH control strategy by Streptomyces sp. M-Z18 from glycerol. Bioprocess Biosystems Engineering, 34, 561–567.

    Article  CAS  Google Scholar 

  10. Hiraki, J., Masakazu, H., Hiroshi, M., & Yoshikazu, I. (1998). Improved ε-poly-L-lysine production of an S-(2-aminoethyl)-L-cysteine resistant mutant of Streptomyces albulus. Seibutsu Kogakkaishi, 76, 487–493.

    CAS  Google Scholar 

  11. Kahar, P., Iwata, T., Hiraki, J., Park, E. Y., & Okabe, M. (2001). Enhancement of epsilon-polylysine production by Streptomyces albulus strain 410 using pH control. Journal of Bioscience Bioengineering, 91, 190–194.

    Article  CAS  Google Scholar 

  12. Zong, H., Zhan, Y., Li, X., Peng, L. J., Feng, F. Q., & Li, D. (2012). A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. African Journal of Microbiology Research, 6, 3154–3158.

    CAS  Google Scholar 

  13. Ren, X. D., Xu, Y. J., Zeng, X., Chen, X. S., Tang, L., & Mao, Z. G. (2015). Microparticle-enhanced production of epsilon-poly-L-lysine in fed-batch fermentation. Rsc Advance, 5, 82138–82143.

    Article  CAS  Google Scholar 

  14. Xu, Z., Bo, F., Xia, J., Sun, Z., Li, S., Feng, X., & Xu, H. (2015). Effects of oxygen-vectors on the synthesis of epsilon-poly-lysine and the metabolic characterization of Streptomyces albulus PD-1. Biochemical Engineering Journal, 94, 58–64.

    Article  CAS  Google Scholar 

  15. Li, S., Li, F., Chen, X. S., Wang, L., Xu, J., Tang, L., & Mao, Z. G. (2012). Genome shuffling enhanced epsilon-poly-L-lysine production by improving glucose tolerance of Streptomyces graminearus. Applied Biochemistry Biotechnology, 166, 414–423.

    Article  CAS  Google Scholar 

  16. Ochi, K. (2007). From microbial differentiation to ribosome engineering. Bioscience Biotechnology and Biochemistry, 71, 1373–1386.

    Article  CAS  Google Scholar 

  17. Chalopagorn, P., Charoenpanich, J., & Choowongkomon, K. (2014). Genome shuffling enhances lipase production of thermophilic Geobacillus sp. Applied Biochemistry and Biotechnology, 174, 1444–1454.

    Article  CAS  Google Scholar 

  18. Li, S., Chen, X. S., Dong, C. L., Zhao, F. L., Tang, L., & Mao, Z. G. (2013). Combining genome shuffling and interspecific hybridization among Streptomyces improved epsilon-poly-l-lysine production. Applied Biochemistry and Biotechnology, 169, 338–350.

    Article  CAS  Google Scholar 

  19. Chen, X. S., & Mao, Z. G. (2013). Comparison of glucose and glycerol as carbon sources for epsilon-poly-L-lysine production by Streptomyces sp. M-Z18. Applied Biochemistry Biotechnology, 170, 185–197.

    Article  CAS  Google Scholar 

  20. Hopwood, D. A. and Wright, H. M. (1979) Factors affecting recombinant frequency in protoplast fusion of Streptomyces coelicolor. Journal of General Microbiology, 111.

  21. Zhang, X., Zhang, X. F., Li, H. P., Wang, L. Y., Zhang, C., Xing, X. H., & Bao, C. Y. (2014). Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Applied Microbiology and Biotechnology, 98, 5387–5396.

    Article  CAS  Google Scholar 

  22. Wang, L., Chen, X. S., Wu, G. Y., Li, S., Zeng, X., Ren, X. D., Tang, L., & Mao, Z. G. (2015). Improved epsilon-poly-L-lysine production of Streptomyces sp FEEL-1 by atmospheric and room temperature plasma mutagenesis and streptomycin resistance screening. Annals of Microbiology, 65, 2009–2017.

    Article  CAS  Google Scholar 

  23. Jin, Q. C., Jin, Z. H., Xu, B., Wang, Q., Lei, Y. L., Yao, S. J., & Cen, P. L. (2008). Genomic variability among high pristinamycin-producing recombinants of Streptomyces pristinaespiralis revealed by amplified fragment length polymorphism. Biotechnology Letters, 30, 1423–1429.

    Article  CAS  Google Scholar 

  24. Zeng, X., Chen, X. S., Ren, X. D., Liu, Q. R., Wang, L., Sun, Q. X., Tang, L., & Mao, Z. G. (2014). Insights into the role of glucose and glycerol as a mixed carbon source in the improvement of epsilon-poly-L-lysine productivity. Applied Biochemistry and Biotechnology, 173, 2211–2224.

    Article  CAS  Google Scholar 

  25. Teichgraber, P., Biesold, D., & Pigareva, Z. D. (1973). Subcellular localization of hexokinase in the rat cortex. Neuroscience and Behavioral Physiology, 6, 218–227.

    Article  CAS  Google Scholar 

  26. Morris, C. N., Ainsworth, S., & Kinderlerer, J. (1986). The regulatory properties of yeast pyruvate kinase. Effect of fructose 1,6-bisphosphate. The Biochemical journal, 234, 691–698.

    Article  CAS  Google Scholar 

  27. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  28. Itzhaki, R. F. (1972). Colorimetric method for estimating polylysine and polyarginine. Analytical Biochemistry, 50, 569–574.

    Article  CAS  Google Scholar 

  29. Beauclerk, A. A., & Cundliffe, E. (1987). Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. Journal of Molecular Biology, 193, 661–671.

    Article  CAS  Google Scholar 

  30. Hu, H. F., & Ochi, K. (2001). Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Applied and Environmental Microbiology, 67, 1885–1892.

    Article  CAS  Google Scholar 

  31. Wang, L., Gao, C. H., Tang, N., Hu, S. N. and Wu, Q. F. (2015) Identification of genetic variations associated with epsilon-poly-lysine biosynthesis in Streptomyces albulus ZPM by genome sequencing. Science Report, 5.

  32. Shima, J., Hesketh, A., Okamoto, S., Kawamoto, S., & Ochi, K. (1996). Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). Journal of Bacteriology, 178, 7276–7284.

    Article  CAS  Google Scholar 

  33. Hosoya, Y., Okamoto, S., Muramatsu, H., & Ochi, K. (1998). Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrobial Agents and Chemotherapy, 42, 2041–2047.

    CAS  Google Scholar 

  34. Wang, G. J., Hosaka, T., & Ochi, K. (2008). Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Applied Environmental Microbiology, 74, 2834–2840.

    Article  CAS  Google Scholar 

  35. Okamoto-Hosoya, Y., Okamoto, S., & Ochi, K. (2003). Development of antibiotic-overproducing strains by site-directed mutagenesis of the rpsL gene in Streptomyces lividans. Applied Environmental Microbiology, 69, 4256–4259.

    Article  CAS  Google Scholar 

  36. Hu, H. F., Zhang, Q., & Zhu, B. Q. (2008). Enhanced antibiotic production by inducing low level of resistance to gentamicin. Chinese Journal of Natural Medicines, 6, 146–152.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cooperation Project of Jiangsu Province among Industries, Universities and Institutes (BY2016022-25), the Program of the National Natural Science Foundation of China (21376106), the Innovation Plan of Jiangsu Province (KYLX15_1146), the Fundamental Research Funds for the Central Universities (JUSRP51504), the Open Project Program of the Key Laboratory of Industrial Biotechnology, Ministry of Education, China (KLIBKF201302), and the Jiangsu Province Collaborative Innovation Center for Advanced Industrial Fermentation Industry Development Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xusheng Chen or Zhonggui Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chen, X., Wu, G. et al. Genome Shuffling and Gentamicin-Resistance to Improve ε-Poly-l-Lysine Productivity of Streptomyces albulus W-156. Appl Biochem Biotechnol 180, 1601–1617 (2016). https://doi.org/10.1007/s12010-016-2190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2190-9

Keywords

Navigation