Skip to main content
Log in

Comparative Study on Different Expression Hosts for Alkaline Phytase Engineered in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The application of alkaline phytase as a feed additive is restricted by the poor specific activity. Escherichia coli is a frequently used host for directed evolution of proteins including alkaline phytase towards improved activity. However, it is not suitable for production of food-grade products due to potential pathogenicity. To combine the advantages of different expression systems, mutants of the alkaline phytase originated from Bacillus subtilis 168 (phy168) were first generated via directed evolution in E. coli and then transformed to food-grade hosts B. subtilis and Pichia pastoris for secretory expression. In order to investigate the suitability of different expression systems, the phy168 mutants expressed in different hosts were characterized and compared in terms of specific activity, pH profile, pH stability, temperature profile, and thermostability. The specific activity of B. subtilis-expressed D24G/K70R/K111E/N121S mutant at pH 7.0 and 60 °C was 30.4 U/mg, obviously higher than those in P. pastoris (22.7 U/mg) and E. coli (19.7 U/mg). Moreover, after 10 min incubation at 80 °C, the B. subtilis-expressed D24G/K70R/K111E/N121S retained about 70 % of the activity at pH 7.0 and 37 °C, whereas the values were only about 25 and 50 % when expressed in P. pastoris and E. coli, respectively. These results suggested B. subtilis as an appropriate host for expression of phy168 mutants and that the strategy of creating mutants in one host and expressing them in another might be a new solution to industrial production of proteins with desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brinch-Pedersen, H., Sorensen, L. D., & Holm, P. B. (2002). Engineering crop plants: getting a handle on phosphate. Trends in Plant Science, 7, 118–125.

    Article  CAS  Google Scholar 

  2. Chen, P. T., Shaw, J.-F., Chao, Y.-P., Ho, T.-H. D., & Yu, S.-M. (2010). Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis. Journal Agricultural Food Chemistry, 58, 5392–5399.

    Article  CAS  Google Scholar 

  3. Chen, W., Ye, L., Guo, F., Lv, Y., & Yu, H. (2015). Enhanced activity of an alkaline phytase from Bacillus subtilis 168 in acidic and neutral environments by directed evolution. Biochemical Engineering Journal, 98, 137–143.

    Article  CAS  Google Scholar 

  4. Choi, B. K., Warburton, S., Lin, H., Patel, R., Boldogh, I., Meehl, M., d’Anjou, M., Pon, L., Stadheim, T. A., & Sethuraman, N. (2012). Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Applied Microbiology and Biotechnology, 95, 671–682.

    Article  CAS  Google Scholar 

  5. Clark, S. E., Muslin, E. H., & Henson, C. A. (2004). Effect of adding and removing N-glycosylation recognition sites on the thermostability of barley alpha-glucosidase. Protein Engineering Design and Selection, 17, 245–249.

    Article  CAS  Google Scholar 

  6. De Pourcq, K., De Schutter, K., & Callewaert, N. (2010). Engineering of glycosylation in yeast and other fungi: current state and perspectives. Applied Microbiology and Biotechnology, 87, 1617–1631.

    Article  Google Scholar 

  7. Elkhalil, E. A., Manner, K., Borriss, R., & Simon, O. (2007). In vitro and in vivo characteristics of bacterial phytases and their efficacy in broiler chickens. British Poultry Science, 48, 64–70.

    Article  CAS  Google Scholar 

  8. Fu, S. J., Sun, J. Y., Qian, L. C., & Li, Z. Y. (2008). Bacillus phytases: present scenario and future perspectives. Applied Biochemistry and Biotechnology, 151, 1–8.

    Article  CAS  Google Scholar 

  9. Gawlitzek, M. E. M., Fürch, T., & Kiss, R. (2009). Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Biotechnology and Bioengineering, 103, 1164–1175.

    Article  CAS  Google Scholar 

  10. Guo, M., Hang, H., Zhu, T., Zhuang, Y., Chu, J., & Zhang, S. (2008). Effect of glycosylation on biochemical characterization of recombinant phytase expressed in Pichia pastoris. Enzyme and Microbial Technology, 42, 340–345.

    Article  CAS  Google Scholar 

  11. Ha, N. C., Oh, B. C., Shin, S., Kim, H. J., Oh, T. K., Kim, Y. O., Choi, K. Y., & Oh, B. H. (2000). Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Natural Structural Biology, 7, 147–153.

    Article  CAS  Google Scholar 

  12. Harland, B. F., & Morris, E. R. (1995). Phytate—a good or a bad food component. Nutrition Research, 15, 733–754.

    Article  CAS  Google Scholar 

  13. Hmida-Sayari, A., Elgharbi, F., Farhat, A., Rekik, H., Blondeau, K., & Bejar, S. (2014). Overexpression and biochemical characterization of a thermostable phytase from Bacillus subtilis US417 in Pichia pastoris. Molecular Biotechnology, 56, 839–848.

    Article  CAS  Google Scholar 

  14. Kasturi, L., Eshleman, J. R., Wunner, W. H., & Shakineshleman, S. H. (1995). The hydroxy amino-acid in an Asn-X-Ser/Thr sequon can influence N-linked core glycosylation efficiency and the level of expression of a cell-surface glycoprotein. Journal of Biological Chemistry, 270, 14756–14761.

    Article  CAS  Google Scholar 

  15. Kerovuo, J. L. M., Nurminen, P., Kalkkinen, N., & Apajalahti, J. (1998). Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Applied and Environmental Microbiology, 64, 2079–2085.

    CAS  Google Scholar 

  16. Kim, D. H., Oh, B. C., Choi, W. C., Lee, J. K., & Oh, T. K. (1999). Enzymatic evaluation of Bacillus amyloliquefaciens phytase as a feed additive. Biotechnology Letters, 21, 925–927.

    Article  CAS  Google Scholar 

  17. Lei, X. G., Weaver, J. D., Mullaney, E., Ullah, A. H., & Azain, M. J. (2013). Phytase, a new life for an “old” enzyme. Annual Review of Animal Biosciences, 1, 283–309.

    Article  Google Scholar 

  18. Li, P. Z., Anumanthan, A., Gao, X. G., Ilangovan, K., Suzara, V. V., Duzgunes, N., & Renugopalakrishnan, V. (2007). Expression of recombinant proteins in Pichia pastoris. Applied Biochemistry and Biotechnology, 142, 105–124.

    Article  CAS  Google Scholar 

  19. Maenz, D. D., Engele-Schaan, C. M., Newkirk, R. W., & Classen, H. L. (1999). The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Animal Feed Science and Technology, 81, 177–192.

    Article  CAS  Google Scholar 

  20. Mellquist, J. L., Kasturi, L., Spitalnik, S. L., & Shakin-Eshleman, S. H. (1998). The amino acid following an Asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry, 37, 6833–6837.

    Article  CAS  Google Scholar 

  21. Mergulhao, F. J. M., Summers, D. K., & Monteiro, G. A. (2005). Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 23, 177–202.

    Article  CAS  Google Scholar 

  22. Oh, B. C., Choi, W. C., Park, S., Kim, Y. O., & Oh, T. K. (2004). Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology, 63, 362–372.

    Article  CAS  Google Scholar 

  23. Olempska-Beer, Z. S., Merker, R. I., Ditto, M. D., & DiNovi, M. J. (2006). Food-processing enzymes from recombinant microorganisms—a review. Regulatory Toxicology and Pharmacology, 45, 144–158.

    Article  CAS  Google Scholar 

  24. Opdenakker, G., Rudd, P. M., Ponting, C. P., & Dwek, R. A. (1993). Concepts and principles of glycobiology. Faseb Journal, 7, 1330–1337.

    CAS  Google Scholar 

  25. Rao, D. E., Rao, K. V., & Reddy, V. D. (2008). Cloning and expression of Bacillus phytase gene (phy) in Escherichia coli and recovery of active enzyme from the inclusion bodies. Journal of Applied Microbiology, 105, 1128–1137.

    Article  CAS  Google Scholar 

  26. Schroder, B., Breves, G., & Rodehutscord, M. (1996). Mechanisms of intestinal phosphorus absorption and availability of dietary phosphorus in pigs. Deutsche Tierärztliche Wochenschrift, 103, 209–214.

    CAS  Google Scholar 

  27. Shin, S., Ha, N. C., Oh, B. C., Oh, T. K., & Oh, B. H. (2001). Enzyme mechanism and catalytic property of beta propeller phytase. Structure, 9, 851–858.

    Article  CAS  Google Scholar 

  28. Tran, T. T., Mamo, G., Mattiasson, B., & Hatti-Kaul, R. (2010). A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 37, 279–287.

    Article  CAS  Google Scholar 

  29. Viader-Salvado, J. M., Gallegos-Lopez, J. A., Carreon-Trevino, J. G., Castillo-Galvan, M., Rojo-Dominguez, A., & Guerrero-Olazaran, M. (2010). Design of thermostable beta-propeller phytases with activity over a broad range of pHs and their overproduction by Pichia pastoris. Applied and Environmental Microbiology, 76, 6423–6430.

    Article  CAS  Google Scholar 

  30. Wei Wei, L. C., Zou, G., Wang, Q., Yan, X., Zhang, J., Wang, C., & Zhou, Z. (2013). N-glycosylation affects the proper folding, enzymatic characteristics and production of a fungal b-glucosidase. Biotechnology and Bioengineering, 110, 3075–3084.

    Article  CAS  Google Scholar 

  31. Wu, S. C., Yeung, J. C., Duan, Y. J., Ye, R. Q., Szarka, S. J., Habibi, H. R., & Wong, S. L. (2002). Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: effects of molecular chaperones and a wall-bound protease on antibody fragment production. Applied and Environmental Microbiology, 68, 3261–3269.

    Article  CAS  Google Scholar 

  32. Wyss, M., Brugger, R., Kroenberger, A., Remy, R., Fimbel, R., Osterhelt, G., Lehmann, M., & van Loon, A. (1999). Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Applied and Environmental Microbiology, 65, 367–373.

    CAS  Google Scholar 

  33. Lei, X., & Stahl, C. (2001). Biotechnological development of effective phytases for mineral nutrition and environmental protection. Applied Microbiology and Biotechnology, 57, 474–481.

    Article  CAS  Google Scholar 

  34. Yamabhai, M., Emrat, S., Sukasem, S., Pesatcha, P., Jaruseranee, N., & Buranabanyat, B. (2008). Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems. Journal of Biotechnology, 133, 50–57.

    Article  CAS  Google Scholar 

  35. Yang, M., Johnson, S. C., & Murthy, P. P. (2012). Enhancement of alkaline phytase production in Pichia pastoris: influence of gene dosage, sequence optimization and expression temperature. Protein Expres Purification, 84, 247–254.

    Article  CAS  Google Scholar 

  36. Zaia, J. (2008). Mass spectrometry and the emerging field of glycomics. Chemical Biology, 15, 881–892.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (Grant No. 21406196), Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ14B060005), and National High Technology Research and Development Program of China (Grant No. SS2015AA020601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidan Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Yu, H. & Ye, L. Comparative Study on Different Expression Hosts for Alkaline Phytase Engineered in Escherichia coli . Appl Biochem Biotechnol 179, 997–1010 (2016). https://doi.org/10.1007/s12010-016-2046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2046-3

Keywords

Navigation