Skip to main content
Log in

Identifying a Carotenoid Cleavage Dioxygenase 4a Gene and Its Efficient Agrobacterium-Mediated Genetic Transformation in Bixa orellana L.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Carotenoids are metabolized to apocarotenoids through the pathway catalysed by carotenoid cleavage oxygenases (CCOs). The apocarotenoids are economically important as it is known to have therapeutic as well as industrial applications. For instance, bixin from Bixa orellana and crocin from Crocus sativus are commercially used as a food colourant and cosmetics since prehistoric time. In our present study, CCD4a gene has been identified and isolated from leaves of B. orellana for the first time and named as BoCCD4a; phylogenetic analysis was carried out using CLUSTAL W. From sequence analysis, BoCCD4a contains two exons and one intron, which was compared with the selected AtCCD4, RdCCD4, GmCCD4 and CmCCD4a gene. Further, the BoCCD4a gene was cloned into pCAMBIA 1301, transformed into Agrobacterium tumefaciens EHA105 strain and subsequently transferred into hypocotyledons and callus of B. orellana by agro-infection. Selection of stable transformation was screened on the basis of PCR detection by using GUS and hptII specific primer, which was followed by histochemical characterization. The percent transient GUS expression in hypocotyledons and callus was 84.4 and 80 %, respectively. The expression of BoCCD4a gene in B. orellana was confirmed through RT-PCR analysis. From our results, the sequence analysis of BoCCD4a gene of B. orellana was closely related to the CsCCD4 gene of C. sativus, which suggests this gene may have a role in various processes such as fragrance, insect attractant and pollination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCD:

Carotenoid cleavage dioxygenase

NCED:

9-cis epoxy carotenoid dioxygenase

CCO:

Carotenoid cleavage oxygenase

BLAST:

Basic Local Alignment Sequence Tool

NJ:

Neighbour-joining method

CTAB:

Cetyltrimethyl ammonium bromide

MS:

Murashige and Skoog

LB:

Luria broth

YEP:

Yeast extract peptone

NAA:

α-Naphthaleneacetic acid

2,4-D:

2,4-Dichlorophenoxyacetic acid

BA:

Benzyladenine

35S CaMV:

35S promoter of the cauliflower mosaic virus

GUS:

β-Glucucauronidase

hptII :

Hygromycin phosphotransferase II

OD600:

Optical density at 600 nm

GFP:

Green fluorescence protein

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcriptase–polymerase chain reaction

X-Gluc:

5-Bromo-4-chloro-3-indolyl-b-d-glucuronic acid

References

  1. Lu, S., & Li, L. (2008). Carotenoid metabolism: biosynthesis, regulation, and beyond. Journal of Integrative Plant Biology, 50, 778–785.

    Article  CAS  Google Scholar 

  2. Huang, F. C., Molnar, P., & Schwab, W. (2009). Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. Journal of Experimental Botany, 60, 3011–3022.

    Article  CAS  Google Scholar 

  3. Priya, R., & Siva, R. (2014). Phylogenetic analysis and evolutionary studies of plant carotenoid cleavage dioxygenase gene. Gene, 548, 223–233.

    Article  CAS  Google Scholar 

  4. Schwartz, S. H., Qin, X., & Zeevaart, J. A. (2001). Characterization of a novel carotenoid cleavage dioxygenase from plants. The Journal of Biological Chemistry, 276, 25208–25211.

    Article  CAS  Google Scholar 

  5. Rodrı’guez-A Vila, N. L., Narvaez-Zapata, J. A., Ramı’rez-Benı’tez, J. E., Aguilar-Espinosa, M. L., & Rivera-Madrid, R. (2011). Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana. Journal of Experimental Botany, 62, 5385–5395.

    Article  Google Scholar 

  6. Ahrazem, O., Trapero, A., Gómez, M. D., Rubio-Moraga, A., & Gómez-Gómez, L. (2010). Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies. Genomics, 96, 239–250.

    Article  CAS  Google Scholar 

  7. Moise, A. R., von Lintig, J., & Palczewski, K. (2005). Related enzymes solve evolutionary recurrent problems in the metabolism of carotenoids. Trends in Plant Science, 10(4), 178–186.

    Article  CAS  Google Scholar 

  8. Kato, M., Matsumoto, H., Ikoma, Y., Okuda, H., & Yano, M. (2006). The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. Journal of Experimental Botany, 57, 2153–2164.

    Article  CAS  Google Scholar 

  9. Hirschberg, J. (2001). Biosynthesis in flowering plants. Current Opinion in Plant Biology, 4, 210–218.

    Article  CAS  Google Scholar 

  10. Cazzonelli, C. I. (2011). Carotenoids in nature: insights from plants and beyond. Functional Plant Biology, 3, 833–847.

    Article  Google Scholar 

  11. Priya, R., & Siva, R. (2015). Analysis of phylogenetic and functional diverge in plant nine-cis epoxycarotenoid dioxygenase gene family. Journal of Plant Research, 128, 519–534.

    Article  CAS  Google Scholar 

  12. Bouvier, F., Isner, J. C., Dogbo, O., & Camara, B. (2005). Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Science, 10, 187–194.

    Article  CAS  Google Scholar 

  13. Siva, R., Mathew, G. J., Venkat, A., & Dhawan, C. (2008). An alternative tracking dye for gel electrophoresis. Current Science, 94, 765–767.

    CAS  Google Scholar 

  14. Siva, R., Prabhu Doss, F., Kundu, K., Satyanarayana, V. S. V., & Kumar, V. (2010). Molecular characterization of bixin—an important industrial product. Industrial Crops and Products, 32, 48–53.

    Article  CAS  Google Scholar 

  15. Srivastava, A., Shukla, Y., Jain, S., & Kumar, S. (1999). Chemistry pharmacology and uses of Bixa orellana—a review. Journal of medicinal and Aromatic Plant Science, 21, 1145–1154.

    CAS  Google Scholar 

  16. Zaldivar–Cruz, J. M., Ballina- Gomez, H., Guerrero- Rodriguez, C., Aviler- Berzunia, E., & Godoy- Hernandez, G. C. (2003). Agrobacterium-mediated transient transformation of annatto (Bixa orellana) hypocotyls with the GUS reporter gene. Plant Cell Tissue Organ Culture, 73, 281–284.

    Article  Google Scholar 

  17. Parimalan, R., Venugopalan, A., Giridhar, P., & Ravishankar, G. A. (2011). Somatic embryogenesis and Agrobacterium-mediated transformation in Bixa orellana L. Plant Cell Tissue Organ Culture, 105, 317–328.

    Article  CAS  Google Scholar 

  18. Parimalan, R., Giridhar, P., & Ravishanker, G. A. (2008). Mass multiplication of Bixa orellana L. through tissue culture for commercial propagation. Industrial Crops and Products, 28, 122–127.

    Article  CAS  Google Scholar 

  19. Huang, J., Pray, C., & Rozelle, S. (2002). Enhancing the crops to feed the poor. Nature, 418, 678–684.

    Article  CAS  Google Scholar 

  20. Sharma, M. K., Solanke, A. U., Jani, D., Singh, Y., & Sharma, A. K. (2009). A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. Journal of Bioscience, 34, 423–433.

    Article  CAS  Google Scholar 

  21. Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P., & Potrykus, I. (2000). Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice enosperm. Science, 287, 303–305.

    Article  CAS  Google Scholar 

  22. Burkhardt, P. K., Beyer, P., Wunn, J., Kloti, A., Armstrong, G. A., Schledz, M., Von Lintig, J., & Potrykus, I. (1997). Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. The Plant Journal, 11, 1071–1078.

    Article  CAS  Google Scholar 

  23. Costa, M., Otoni, W., & Moore, G. (2002). An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradise (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Reports, 4, 365–373.

    Article  Google Scholar 

  24. Siva, R. (2003). Assessment of genetic variation in some dye-yielding plants using isoenzyme data (Ph. D Thesis). Tiruchirapalli: Bharathidasan University.

    Google Scholar 

  25. Anantharaman, A., Hemachandran, H., Priya, R. R., Sankari, M., Gopalakrishnan, M., Palanisami, N., & Siva, R. (2016). Inhibitory effect of apocarotenoids on the activity of tyrosinase: multi-spectroscopic and docking studies. Journal of Bioscience and Bioengineering, Journal of Bioscience and Bioengineering, 121, 13–20.

    Article  CAS  Google Scholar 

  26. Jako, C., Coutu, C., Roewer, I., Reed, D. W., Pelcher, L. E., & Covello, P. S. (2002). Probing carotenoid biosynthesis in developing seed coats of Bixa orellana (Bixaceae) through expressed sequence tag analysis. Plant Science, 163, 141–145.

    Article  CAS  Google Scholar 

  27. Bouvier, F., Dogbo, O., & Camara, B. (2003). Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science, 300, 2089–2091.

    Article  CAS  Google Scholar 

  28. Bouvier, F., Suirem, C., Mutterer, J., & Camara, B. (2003). Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell, 15, 47–62.

    Article  CAS  Google Scholar 

  29. Rubio, A., Rambla, J. L., Santaella, M., Gómez, M. D., Orzaez, D., Granell, A., & GómezGómez, L. (2008). Cytosolic and plastoglobule targeted carotenoid dioxygenases from Crocus sativus are both involved in β ionone release. Journal of Bioliogical Chemistry, 283, 24816–24825.

    Article  CAS  Google Scholar 

  30. Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., & Sumitomo, K. (2006). Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in Chrysanthemum petals. Plant Physiology, 142, 1193–1201.

    Article  CAS  Google Scholar 

  31. Campbell, R., Ducreux, L. J., Morris, W. L., Morris, J. A., Suttle, J. C., Ramsay, G., Bryan, G. J., Hedley, P. E., & Taylor, M. A. (2010). The metabolic and developmental roles of carotenoid cleavage dioxygenase4 from potato. Plant Physiology, 154, 656–664.

    Article  CAS  Google Scholar 

  32. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of higher molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.

    Article  CAS  Google Scholar 

  33. Ullmann, A., Jacob, F., & Monod, J. (1967). Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the beta-galactosidase structural gene of Escherichia coli. Journal of Molecular Biology, 24, 339–343.

    Article  CAS  Google Scholar 

  34. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.2.

    Article  CAS  Google Scholar 

  35. Thompson, J. D., Higgins, D. G., & Gidson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  36. Capella- Gutierrez, S., Silla-Martinez, J. M., & Gabaldon, T. (2009). TtrimA1: a tool for automated alignment trimming in large trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–1973.

    Article  CAS  Google Scholar 

  37. Posada, D. (2006). ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Research, 1, 34.

    Google Scholar 

  38. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  39. Benson, D. A., Karsch-Mizrachi, I., Clark, K., Lipman, D. J., Ostell, J., & Sayers, E. W. (2012). GenBank. Nucleic Acids Research, 40(D1), D48–D53.

    Article  CAS  Google Scholar 

  40. Solovyev, V., Kosarev, P., Seledsov, I., & Vorobyev, D. (2006). Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biology, 7(1), 10.1–10.12.

    Article  Google Scholar 

  41. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). NY: Cold Spring Harbor Lab. Press, Plainview.

    Google Scholar 

  42. Holsters, M., De-Waele, D., Depicker, A., Messens, E., Montagu, V. M., & Schell, J. (1978). Transfection and transformation of Agrobacterium tumefaciens. Molecular and General Genetics, 163, 181–187.

    Article  CAS  Google Scholar 

  43. Murashige, T., & Skooge, F. (1962). A revised medium or rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  44. Jefferson, R. A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387–405.

    Article  CAS  Google Scholar 

  45. Vallabhaneni, R., Bradbury, L. M. T., & Wurtzel, E. T. (2010). The carotenoid dioxygenase gene family in maize, sorghum and rice. Archives of Biochemistry and Biophysics, 504, 104–111.

    Article  CAS  Google Scholar 

  46. Vogel, J. T., Tan, B. C., McCarty, D. R., & Klee, H. J. (2008). The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. The Journal of Biological Chemistry, 283, 11364–11373.

    Article  CAS  Google Scholar 

  47. Simkin, A. J., Underwood, B. A., Auldridge, M., Loucas, H. M., Shibuva, K., Schmelz, E., Clark, D. G., & Klee, H. J. (2004). Cardian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiology, 136, 3504–3514.

    Article  CAS  Google Scholar 

  48. Mathieu, S., Terrier, N., Procureur, J., Bigey, F., & Gunata, Z. (2005). A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. Journal of Experimental Botany, 56, 2721–2731.

    Article  CAS  Google Scholar 

  49. Pooja, S., Sweta, K., Mohanapriya, A., Sudandiradoss, C., Siva, R., Gothandam, K. M., & Babu, S. (2015). Homotypic clustering of Osmy4 binding site motifs in promoters of the rice genome and cellular- level implications on shealth blight disease resistance. Gene, 561, 209–218.

    Article  CAS  Google Scholar 

  50. Kumar, K. K., Maruthasalam, S., Loganathan, M., Sudhakar, D., & Balasubramanian, P. (2005). An improved Agrobacterium-mediated transformation protocol for recalcitrant elite indica rice cultivars. Plant Molecular Biology Reporter, 23, 67–73.

    Article  CAS  Google Scholar 

  51. Mohanty, A., Sarma, N. P., & Tyagi, A. K. (1999). Agrobacterium-mediated high frequency transformation of an elite indica rice variety Pusa Basmati 1 and transmission of the transgenes to R2 progeny. Plant Science, 147, 127–137.

    Article  CAS  Google Scholar 

  52. Ziemienowicz, A. (2014). Agrobacterium-mediated plant transformation: factors, applications and recent advances. Biocatalysis and Agricultural Biotechnology, 4, 95–102.

    Article  Google Scholar 

  53. Phillips, G. C., & Collins, G. B. (1979). In vitro tissue culture of selected legumes and plant regeneration from callus culture of red clover. Crop Science, 19, 59–64.

    Article  Google Scholar 

  54. Tang, W., Luo, H., & Ronald Newton, J. (2004). Effects of antibiotics on the elimination of Agrobacterium tumefaciens from loblolly pine (Pinus taeda) zygotic embryo explants and on transgenic plant regeneration. Plant Cell Tissue Organ Culture, 70, 71–81.

    Article  Google Scholar 

  55. Katiyar, S. K., Chandel, G., Singh, P., & Pratibha, R. (1999). Genetic variation and effect of 2,4, D in in vitro plant regeneration in indica rice cultivars. Oryza, 36, 254–256.

    Google Scholar 

  56. Ombori, O., Muoma, J. V. O., & Machuka, J. (2013). Agrobacterium-mediated genetic transformation of selected tropical inbred and hybrid maize (Zea mays L.) lines. Plant Cell Tissue Organ Culture, 113, 11–23.

    Article  CAS  Google Scholar 

  57. Aggarwal, D., Kumar, A., & Sudhakara Reddy, M. (2011). Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis. Acta Physiologiae Plantarum, 33, 1603–1611.

    Article  CAS  Google Scholar 

  58. Lashbrooke, J. G., Young, P. R., Dockrall, S. J., Vasanth, K., & Vivier, M. A. (2013). Functional characterization of three members of the vitis vinifera L. carotenoid cleavage dioxygenase gene family. BMC Plant Biology, 13, 156.

    Article  Google Scholar 

  59. Hiei, Y., Ohta, S., Komari, T., & Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 6, 271–282.

    Article  CAS  Google Scholar 

  60. Yan, J., Gan, L., Guo, Y., Du, L., Wang, F., Wang, Y., Zhen, L., Wang, Q., Zou, D., Chen, W., Yu, L., Li, H., & Li, X. (2015). Expression of biologically recombinant human acidic fibroblast growth factor in Arabidopsis thaliana seeds via oleosin fusion technology. Gene, 566, 89–94.

    Article  Google Scholar 

  61. Karthikeyan, A., Pandian, S. K., & Ramesh, M. (2011). Agrobacterium-mediated transformation of leaf base derived callus tissues of popular indica rice (Oryza sativa L. sub sp. Indica cv. ADT 43). Plant Science, 181, 258–268.

    Article  CAS  Google Scholar 

  62. Andrieu, A., Breitler, J. C., Sire, C., Meynard, D., Gantet, P., & Guiderdoni, E. (2012). An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice, 5(23), 12.

    Google Scholar 

  63. Cao, S. L., Masilamany, P., Lia, W. B., & Pauls, K. P. (2014). Agrobacterium tumefaciens-mediated transformation of corn (Zea mays L.) multiple shoots. Biotechnology Biotechnological Equipment, 28, 208–216.

    Article  CAS  Google Scholar 

  64. Nyaboga, E., Tripathi, J. N., Manoharan, R., & Tripath, L. (2014). Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement. Frontires in Plant Science, 5, 463.

    Google Scholar 

  65. Frame, B. R., Shou, H., Chikwamba, R. K., Zhang, Z., Xiang, C., Fonger, T. M., Pegg, S. E., Li, B., Nettleton, D. S., Pei, D., & Wang, K. (2002). Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector. System Plant Physiology, 129, 13–22.

    Article  CAS  Google Scholar 

  66. Humara, J. M., Lopez, M., & Ordas, R. J. (1999). Agrobacterium tumefaciens mediated transformation of Pinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer. Plant Cell Reports, 19, 51–58.

    Article  CAS  Google Scholar 

  67. Murray, F., Brettell, R., Matthews, P., Bishop, D., & Jacobsen, J. (2004). Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes. Plant Cell Reporter, 22, 397–402.

    Article  CAS  Google Scholar 

  68. Duque, A. S., Araujo, S. S., Cordeiro, M. A., Santos, D. M., & Fevereiro, M. P. (2007). Use of fused GFP and GUS reporters for the recovery of transformed Medicago truncatula somatic embryos without selective pressure. Plant Cell Tissue Organ Culture, 90, 325–330.

    Article  CAS  Google Scholar 

  69. Maximova, S., Dandekar, A. M., & Guiltinan, M. J. (1998). Investigation of Agrobacterium mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than TDNA transfer are rate-limiting. Plant Molecular Biology, 37, 549–559.

    Article  CAS  Google Scholar 

  70. Kumar, A., Chakraborty, A., Ghanta, S., & Chattopadhyay, S. (2009). Agrobacterium-mediated genetic transformation of mint with E. coli glutathione synthetase gene. Plant Cell Tissue Organ Culture, 96, 117–126.

    Article  CAS  Google Scholar 

  71. Bhaskar, P. B., Venkateshwaran, M., Wu, L., Ane, J. M., & Jiang, J. (2009). Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. Plos One, 4, e5812.

    Article  Google Scholar 

Download references

Acknowledgments

We express our heartfelt gratitude to Science and Engineering Research Board—Department of Science and Technology, New Delhi, India, for the support extended through the project [SR/FT/LS-75/2011]. We express our gratitude to Dr. K. Suthindhiran for the fluorescence microscope. The authors are thankful to the VIT University management for their constant support.

Authors’ Contribution Statement

RS conceived and designed the experiments. MS performed the experiments and wrote the manuscript. GC corrected the bioinformatics part of experiments. HH, DF and AA helped to correct the manuscript. SB and RM reviewed the manuscript. All authors have read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramamoorthy Siva.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankari, M., Hemachandran, H., Anantharaman, A. et al. Identifying a Carotenoid Cleavage Dioxygenase 4a Gene and Its Efficient Agrobacterium-Mediated Genetic Transformation in Bixa orellana L.. Appl Biochem Biotechnol 179, 697–714 (2016). https://doi.org/10.1007/s12010-016-2025-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2025-8

Keywords

Navigation