Skip to main content
Log in

A simple and efficient Agrobacterium-mediated procedure for transformation of tomato

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

We describe a highly efficient and reproducible Agrobacterium-mediated transformation protocol applicable to several varieties of tomato (Solanum lycopersicum, earlier known as Lycopersicum esculentum). Conditions such as co-cultivation period, bacterial concentration, concentration of benzyl amino purine (BAP), zeatin and indole acetic acid (IAA) were optimized. Co-cultivation of explants with a bacterial concentration of 108 cells/ml for three days on 2 mg/l BAP, followed by regeneration on a medium containing 1 mg/ml zeatin resulted in a transformation frequency of 41.4%. Transformation of tomato plants was confirmed by Southern blot analysis and β-glucuronidase (GUS) assay. The protocol developed showed very high efficiency of transformation for tomato varieties Pusa Ruby, Arka Vikas and Sioux. The optimized transformation procedure is simple, efficient and does not require tobacco, Petunia, tomato suspension feeder layer or acetosyringone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMV:

alfalfa mosaic virus

BAP:

6-benzylaminopurine

DMSO:

dimethyl sulphoxide

GUS:

β-glucuronidase

IAA:

indole-3-acetic acid

MS:

Murashige and Skoog

OD:

optical density

PCR:

polymerase chain reaction

SDS:

sodium dodecyl sulphate

References

  • Adhiguru P, Devi S V and Kanagaraj M 2004 Strengthening economic and nutrition security: role of vegetables; in Impact of vegetable research in India (eds) S Kumar, P K Joshi and S Pal (New Delhi: NCAP) vol 13, pp 190–200

    Google Scholar 

  • Arumuganathan K and Earle E 1991 Estimation of nuclear DNA content of plants by flow cytometry; Plant Mol. Biol. Rep. 9 208–218

    Article  CAS  Google Scholar 

  • Butaye K M J, Cammue B P A, Delaure S L and de Bolle M F C 2005 Approaches to minimize variation of transgene expression in plants; Mol. Breed. 16 79–91

    Article  Google Scholar 

  • Chaudhury A, Maheshwari S C and Tyagi A K 1995 Transient expression of gus gene in intact seed embryos of indica rice after electroporation-mediated gene delivery; Plant Cell Rep. 14 215–220

    Article  CAS  Google Scholar 

  • Cortina C and Culianez-Macia F A 2004 Tomato transformation and transgenic plant production; Plant Cell Tiss. Org. Cult. 76 269–275

    Article  CAS  Google Scholar 

  • Davis M E, Lineberger R D and Miller A R 1991 Effects of tomato cultivar, leaf age, and bacterial strain on transformation by Agrobacterium tumefaciens; Plant Cell Tiss. Org. Cult. 24 115–121

    Article  Google Scholar 

  • Davuluri G R, van Tuinen A, Fraser P D, Manfredonia A, Newman R, Burgess D, Brummell D A, King S R, Palys J, Jhlig J, Bramley P M, Pennings H M J and Bowler C 2005 Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes; Nat. Biotechnol. 23 890–895

    Article  CAS  Google Scholar 

  • De Bolle M F C, Butaye K M J, Coucke W J W, Goderis I J W, Wouters P F J, van Boxel N, Broekaert W F and Cammue B P A 2003 Analysis of the influence of promoter elements and a matrix attachment region on the inter-individual variation of transgene expression in populations of Arabidopsis thaliana; Plant Sci. 165 169–179

    Article  Google Scholar 

  • Dellaporta S L, Wood J and Hicks J B 1983 A plant DNA minipreparation: version II; Plant Mol. Biol. Rep. 1 19–21

    Article  CAS  Google Scholar 

  • Ellul P, Garcia-Sogo B, Pineda B, Rios G, Roig L A and Moreno V 2003 The ploidy level of transgenic plants in Agrobacteriummediated transformation of tomato cotyledons (Lycopersicon esculentum Mill.) is genotype and procedure dependent; Theor. Appl. Genet. 106 231–238

    Article  CAS  Google Scholar 

  • Fillati J J, Kiser J, Rose R and Comai L 1987 Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector; Bio/Technology 5 726–731

    Google Scholar 

  • Frary A and Earle ED 1996 An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato; Plant Cell Rep. 16 235–240

    CAS  PubMed  Google Scholar 

  • Frary A and Van Eck J 2005 Organogenesis from transformed tomato explants; Methods Mol. Biol. 286 141–150

    CAS  PubMed  Google Scholar 

  • Gamborg O L, Miller R A and Ojima K 1968 Nutrient requirements of suspension culture of soybean root cells; Exp. Cell Res. 50 151–158

    Article  CAS  Google Scholar 

  • Hamza S and Chupeau Y 1993 Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum); J. Exp. Bot. 44 1837–1845

    Article  CAS  Google Scholar 

  • Hobbs S L A, Warketin T D and DeLong C M O 1993 Transgene copy number can be positively or negatively associated with transgene expression; Plant Mol. Biol. 21 17–26

    Article  CAS  Google Scholar 

  • Hu W and Phillips G C 2001 A combination of overgrowth-control antibiotics improves Agrobacterium tumefaciens-mediated transformation efficiency for cultivated tomato (L. esculentum); In Vitro Cell Dev. Biol. Plant 37 12–18

    Article  CAS  Google Scholar 

  • Jani D, Meena L S, Rizwan-ul-Haq Q M, Singh Y, Sharma A K and Tyagi A K 2002 Expression of cholera toxin B subunit in transgenic tomato plants; Transgenic Res. 11 447–454

    Article  CAS  Google Scholar 

  • Janssen B, Lund L and Sinha N 1998 Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf; Plant Physiol. 117 771–786

    Article  CAS  Google Scholar 

  • Jia G X, Zhu Z Q, Chang F Q and Li Y × 2002 Transformation of tomato with the BADH gene from Atriplex improves salt tolerance; Plant Cell Rep. 21 141–146

    Article  CAS  Google Scholar 

  • Lin W-C, Lu C-F, Wu J-W, Cheng M-L, Lin Y-M, Yang N-S, Black L, Green S K, Wang J-F and Cheng C-P 2004 Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases; Transgenic Res. 13 567–581

    Article  CAS  Google Scholar 

  • Ling H-Q, Kriseleit D and Ganal M G 1998 Effects of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill); Plant Cell Rep. 17 843–847

    Article  CAS  Google Scholar 

  • Lipp-Joao K H and Brown T A 1993 Enhanced transformation of tomato co-cultivated with Agrobacterium tumefaciens C58C1Rifr::pCSFR1161 in the presence of acetosyringone; Plant Cell Rep. 12 422–425

    CAS  PubMed  Google Scholar 

  • Lohar D P and Peat W E 1998 Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill) cultivars at high temperature; Sci. Horticul. 73 53–60

    Article  Google Scholar 

  • Lopez K, Libas E and Shanmugasundaram S 1996 Vegetable research networking in South Asia; Savernet phase I final report (Shanhua, Tainan, Taiwan: AVRDC) pp 76

    Google Scholar 

  • Madhulatha P, Pandey R, Hazarika P and Rajam M V 2007 High transformation frequency in Agrobacterium-mediated genetic transformation of tomato by using polyamines and maltose in shoot regeneration medium; Physiol. Mol. Biol. Plants 13 191–198

    CAS  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsh R and Fraley R 1986 Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens; Plant Cell Rep. 5 81–84

    Article  CAS  Google Scholar 

  • Mueller L A, Tanskley S D, Giovannoni J J, van Eck J, Stack S, Choi D, Kim D, Chen M, et al. 2005 The tomato sequencing project, the first corner stone of the international Solanaceae project (SOL); Comp. Funct. Genomics 6 153–158

    Article  CAS  Google Scholar 

  • Murashige T and Skoog F 1962 A revised medium for rapid growth and bioassays with tobacco tissue culture; Plant Physiol. 15 473–497

    Article  CAS  Google Scholar 

  • Mythili J B D, Narasimha Murthy D K and Anand L 2005 Studies on the influence of cytokinin independent gene (CKII) on explants differentiation in tomato cv Arka Vikas through Agrobacterium-mediated transformation; in Recent trends in horticultural biotechnology (eds) R Keshavchandran, P A Nazeem, D Girija, P S John and K V Peter (New Delhi: New Delhi Publishing Agency) pp 703–710

    Google Scholar 

  • Oktem H A, Bulbul Y, Oktem E and Yucel M 1999 Regeneration and Agrobacterium-mediated transformation studies in tomato (Lycopersicon esculentum Mill); Tr. J. Bot. 23 345–348

    Google Scholar 

  • Otoni W C, Picoli E A, Costa M G, Nogueira F T and Zerbini F M 2003 Transgenic tomato; in Plant genetic engineering — a multivolume series: 1 vol. 5 (eds) R P Singh and P K Jaiwal (Houston: Sci-Tech. Pub. Co) pp 41–131

    Google Scholar 

  • Park S H, Morris J L, Park J E, Hirschi K D and Smith R H 2003 Efficient and genotype-independent Agrobacterium-mediated tomato transformation; J. Plant Physiol. 160 1253–1257

    Article  CAS  Google Scholar 

  • Patil R S, Davey M R, Power J B and Cocking E C 2002 Effective protocol for Agrobacterium-mediated leaf disc transformation in tomato (Lycopersicon esculentum Mill); Indian J. Biotechnol. 1 339–343

    Google Scholar 

  • Pozueta-Romero J, Houlne G, Canas L, Schantz R and Chamarro J 2001 Enhanced regeneration of tomato and pepper seedling explants for Agrobacterium-mediated transformation; Plant Cell Tiss. Organ Cult. 67 173–180

    Article  CAS  Google Scholar 

  • Qiu D, Diretoo G, Tavarza R and Giuliano G 2007 Improved protocol for Agrobacterium mediated transformation of tomato and production of transgenic plants containing carotenoid biosynthetic gene CsZCD; Scit. Horticul. 112 172–175

    Article  CAS  Google Scholar 

  • Raj S K, Singh R, Pandey S K and Singh B P 2005 Agrobacteriummediated tomato transformation and regeneration of transgenic lines expressing tomato leaf curl virus coat protein gene for resistance against TLCV infection; Curr. Sci. 88 1674–1679

    CAS  Google Scholar 

  • Roekel J S C, Damm B, Melchers L S and Hoekema A 1993 Factors influencing transformation frequency of tomato (Lycopersicon esculentum); Plant Cell Rep. 12 644–647

    Article  Google Scholar 

  • Sambrook J, Fritsch E F and Maniatis T 1989 Molecular cloning. A laboratory manual 2nd edition (New York: Cold Spring Harbor Laboratory Press)

    Google Scholar 

  • Sun H-J, Uchii S, Watanabe S and Ezira H 2006 A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics; Plant Cell Physiol. 47 426–431

    Article  CAS  Google Scholar 

  • Vidya C S S, Manoharan M, Kumar C T R, Savithri H S and Sita G L 2000 Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum var. Pusa Ruby) with coat-protein gene of physalis mottle tymovirus; J. Plant Physiol. 156 106–110

    Article  CAS  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W and Giovannoni J 2002 A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus; Science 296 343–346

    Article  CAS  Google Scholar 

  • Youm J W, Heung J, Jeon J H, Kim H, Kim Y H, Ko K, Joung H and Kim H S 2008 Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer’s disease; Biotechnol. Lett. 30 1839–1845

    Article  CAS  Google Scholar 

  • Zhang H and Blumwald W 2001 Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit; Nat. Biotechnol. 19 765–768

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, M.K., Solanke, A.U., Jani, D. et al. A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. J Biosci 34, 423–433 (2009). https://doi.org/10.1007/s12038-009-0049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0049-8

Keywords

Navigation