Skip to main content
Log in

Functional Analysis of the Potential Enzymes Involved in Sugar Modulation in High and Low Sugarcane Cultivars

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane (Saccharum spp.) is a dynamic C4 polyploidy grass used as a major source of sucrose and an alternative for ethanol, food, and energy. Despite growing scientific interest, various sucrose metabolism regulatory aspects have been limited. Biochemical and gene expression studies were conducted on developmental stages, 240–420 days of planting (DAP) in mature leaves of three high and three low sucrose sugarcane cultivars. Sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities were found to be remarkably higher at 240–360 DAP but decrease at 420 DAP. Twofold increases of SS activity was estimated at 240–360 DAP while SPS activity trend was found to be lower than the SS activity. In comparing SS and SPS activities with the brix of respective DAP, results show that these activities are significant and positively correlated with ‘r’ values of 0.69 and 0.68 for SS and SPS, respectively. However, the soluble acid invertase (SAI) and neutral invertase (NI) activities were found to decrease significantly with the maturity of cultivars, negatively correlating with brix at ‘r’ values 0.83 and 0.89 for SAI and NI, respectively. The antioxidant enzyme activity was modulated similar to the invertases activity. Of the six genes, ESAS 11 and 23 associated with sucrose accumulation and ESTS 34 and 41 associated with sugar transport in sugarcane were differentially expressed among the selected high and low sugarcane cultivars. Hence, these findings reinforce the selection of diverse sugarcane cultivars for gene expression studies targeting to quantitative traits and candidate marker determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Becana, M., Moran, J. F., & Iturbe-Ormaetxe, I. (1986). Plant and Soil, 201, 137–147.

    Article  Google Scholar 

  2. Ben-Amor, N., Jimenez, A., Megdiche, W., Lundqvist, M., Sevilla, F., & Abdelly, C. (2007). Journal of Integrative Plant Biology, 49, 982–992.

    Article  CAS  Google Scholar 

  3. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  4. Buczynski, S. R., Thom, M., Chourey, P., & Maretzki, A. (1993). Journal of Plant Physiology, 142, 641–646.

    Article  CAS  Google Scholar 

  5. Cakmak, I., & Marschner, H. (1992). Plant Physiology, 98, 1222–1227.

    Article  CAS  Google Scholar 

  6. Castleden, C. K., Aoki, N., Gillespie, V. J., MacRae, E. A., Quick, W. P., Buchner, P., Foyer, C. H., Furbank, R. T., & Lunn, J. E. (2004). Plant Physiology, 135, 1753–1764.

    Article  CAS  Google Scholar 

  7. Casu, R. E., Gro, C. P. L., Rae, A. L., McIntyre, C. L., Dimmock, C. M., & Manners, J. M. (2003). Plant Molecular Biology, 52, 371–386.

    Article  CAS  Google Scholar 

  8. D’hont, A., Grivet, L., Feldmann, P., Rao, S., Berding, N., & Glaszmann, J. C. (1996). Molecular and General Genetics, 250, 405–413.

    Google Scholar 

  9. Devarumath, R. M., Kalwade, S. B., Bundock, P., Eliott, F. G., & Henry, R. (2013). Plant Breeding, 132, 736–747.

  10. Devarumath, R. M., Kalwade, S. B., Kawar, P. G., & Sushir, K. V. (2012). Sugar Technology, 14, 334–344.

    Article  CAS  Google Scholar 

  11. Doehlert, D. C., & Huber, S. C. (1985). Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 830, 267–273.

    Article  CAS  Google Scholar 

  12. Errabii, T., Gandonou, C. B., Essalmani, H., Abrini, J., Idaomar, M., & Skali-Senhaji, N. (2006). African Journal of Biotechnology, 5, 1488–1493.

    CAS  Google Scholar 

  13. Glasziou, K. T. (1962). Nature, 193, 1100.

    Article  CAS  Google Scholar 

  14. Grof, C. P. L., Albertson, P. L., Bursle, J., Perroux, J. M., Bonnett, G. D., & Manners, J. M. (2007). Crop Science, 47, 1530–1539.

    Article  CAS  Google Scholar 

  15. Gutiérrez-Miceli, F. A., Rodríguez-Mendiola, M. A., Ochoa-Alejo, N., Méndez-Salas, R., Dendooven, L., & Arias-Castro, C. (2002). Acta Physiologiae Plantarum, 24, 441–446.

    Article  Google Scholar 

  16. Hatch, M. D., Sacher, J. A., & Glasziou, K. T. (1963). Plant Physiology, 38, 338–343.

    Article  CAS  Google Scholar 

  17. Helmerhorst, E., & Stokes, G. B. (1980). Analytical Biochemistry, 104, 130–135.

    Article  CAS  Google Scholar 

  18. Hubbard, N. L., Huber, S. C., & Pharr, D. M. (1989). Plant Physiology, 91, 1527–1534.

    Article  CAS  Google Scholar 

  19. Huber, S. C., & Huber, J. L. (1996). Annual Review of Plant Physiology, 47, 431–444.

    Article  CAS  Google Scholar 

  20. Jain, R., Chandra, A., & Solomon, S. (2013). Sugar Technology, 15, 370–378.

    Article  CAS  Google Scholar 

  21. Jang, J. C., & Sheen, J. (1994). Plant Cell, 6, 1665–1679.

    CAS  Google Scholar 

  22. Kalwade, S. B., Kawar, P. G., Devarumath, R. M., & Sushir, K. V. (2012). Electronic journal of. Plant Breeding, 3, 621–628.

    Google Scholar 

  23. Karpe, A., Nikam, A. A., Chimote, K. P., Kalwade, S. B., Kawar, P. G., Babu, H., Devarumath, R. M., & Suprasanna, P. (2012). African Journal of Biotechnology, 11, 9028–9035.

    CAS  Google Scholar 

  24. Kubo, T., Hohjo, I., & Hiratsuka, S. (2001). Scientia Horticulturae, 91, 215–225.

    Article  CAS  Google Scholar 

  25. Li, R., Shi, F., Fukuda, K., & Yang, Y. (2010). Soil Science and Plant Nutrition, 56, 725–733.

    Article  CAS  Google Scholar 

  26. Lingle, S. E. (1999). Crop Science, 39, 480–486.

    Article  CAS  Google Scholar 

  27. Lingle, S. E., & Dyer, J. M. (2001). Journal of Plant Physiology, 158, 129–131.

    Article  CAS  Google Scholar 

  28. Moore, P. H., & Cosgrove, D. J. (1991). Plant Physiology, 96, 794–801.

    Article  CAS  Google Scholar 

  29. Moore, P. H., & Maretzki, A. (1996). Photoassimilate distribution in plants and crops. In E. Zamski & A. A. Schafer (Eds.), Source–sink relationships (pp. 643–669). NY: Marcel Dekker.

    Google Scholar 

  30. Nguyen-Quoc, B., Krivitzky, M., Huber, S., & Lechamy, A. (1990). Plant Physiology, 94, 516–523.

    Article  CAS  Google Scholar 

  31. Papini-Terzi, F. S., Rocha, F. R., Vencio, R. Z. N., Felix, J. M., Branco, D. S., Waclawovsky, A. J., Bem, L. D., Lembke, C. G., Costa, M., Nishiyama, M. Y., Vicentini, R., Vincentz, M., Ulian, E. C., Menossi, M., & Souza, G. M. (2009). BMC Genomics, 10, 120.

    Article  Google Scholar 

  32. Pessoa-Jr, A., Roberto, I. C., Menossi, M., Santos, R. R., Filho, S. O., Christina, T., & Penna, P. (2005). Applied Biochemistry and Biotechnology, 121, 59–70.

    Article  Google Scholar 

  33. Prathima, P. T., Suesha, G. S., & Selvi, A. (2011). Journal of Sugarcane Research, 1, 35–42.

    Google Scholar 

  34. Rodriguez, R., Aragon, E. C., Escalona, M., Gonzalez-Olmedo, J. L., & Desjardins, Y. (2008). In Vitro Cellular and Developmental Biology Plant, 44, 533–539.

    Article  CAS  Google Scholar 

  35. Sacher, J. A., Hatch, M. D., & Glasziou, K. T. (1963). Plant Physiology, 39, 348–354.

    Article  Google Scholar 

  36. Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Plant Science, 163, 1037–1046.

    Article  CAS  Google Scholar 

  37. Sauer, N., & Stadler, P. (1993). The Plant Journal, 4, 601–610.

    Article  CAS  Google Scholar 

  38. Schafer, E. W., Rohwer, J. M., & Botha, F. C. (2005). Journal of Plant Physiology, 162, 11–20.

    Article  Google Scholar 

  39. Shafer, E. W., Rohwer, J. W., & Botha, F. C. (2004). Physiologia Plantarum, 121, 187–195.

    Article  Google Scholar 

  40. Shalata, A., Mittova, V., Volokita, M., Guy, M., & Tal, M. (2001). Physiologia Plantarum, 112, 487–494.

    Article  CAS  Google Scholar 

  41. Singh, R. K., Singh, P., Singh, S. P., Mohapatra, T., & Singh, S. B. (2006). Sugar Cane International, 24, 7–13.

    CAS  Google Scholar 

  42. Somogyi, M. (1952). Journal of Biological Chemistry, 200, 245.

    Google Scholar 

  43. Stitt, M., & Quick, W. P. (1989). Physiologia Plantarum, 77, 633–614.

    Article  CAS  Google Scholar 

  44. van Handel, E. (1968). Analytical Biochemistry, 22, 280–283.

    Article  Google Scholar 

  45. Verma, A. K., Upadhyay, S. K., Srivastava, M. K., Verma, P. C., Solomon, S., & Singh, S. B. (2011). Acta Physiologia Plantarum, 33, 1749–1757.

    Article  CAS  Google Scholar 

  46. Verma, A. K., Upadhyay, S. K., Verma, P. C., Solomon, S., & Singh, S. B. (2011). Plant Biology, 13, 325–332.

    Article  CAS  Google Scholar 

  47. Welbaum, G. E., & Meinzer, F. C. (1990). Plant Physiology, 93, 1147–1153.

    Article  CAS  Google Scholar 

  48. Witham, F. H., Blaydes, D. F., & Devlin, R. M. (1971). Experiments in plant physiology. New York: Van Nostrand Reinhold Co.

    Google Scholar 

  49. Zhu, Y. J., Komor, E., & Moore, P. H. (1997). Plant Physiology, 115, 609–616.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Director General and plant breeding section, Vasantdada Sugar Institute (VSI), Pune for their constant support during research work. Author SBK is thankful to Praj Industries, Pune for award research fellowship for Ph.D. program in the name of Late Madhubhau Chaudhari Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachayya Mallikarjun Devarumath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalwade, S.B., Devarumath, R.M. Functional Analysis of the Potential Enzymes Involved in Sugar Modulation in High and Low Sugarcane Cultivars. Appl Biochem Biotechnol 172, 1982–1998 (2014). https://doi.org/10.1007/s12010-013-0622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0622-3

Keywords

Navigation