Skip to main content
Log in

Carbon metabolism in leaves of micropropagated sugarcane during acclimatization phase

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The activity of the main enzymes related to the sucrose metabolism, photosynthesis, and sucrose concentration were studied in sugarcane (Saccharum spp hybrid) plantlets. Acclimatization was developed in two steps. (1) Light intensity of 1,000 μmol m−2 s−1 and 90% relative humidity during the first 21 d; followed by 2,000 μmol m−2 s−1 and approximately 80% of relative humidity. All measurements were carried out at the end of rooting phase concomitant with day 0 of acclimatization and at 7-d intervals thereafter (0, 7, 14, 21, 28, 35, 42 d). As the in vitro plantlets were transferred to the acclimatization phase, photosynthesis increased significantly during the first 7 d. After this period, the increase was constant with only a small but nonsignificant decline after being transferred to the uncontrolled external conditions. The activity of the sucrose synthase began to show a decrease, starting from day 7, and was related to the changes that began to happen in these plants from its adaptation to new ex vitro conditions. Due to the increase of fresh weight favored by the high light intensity and lower relative humidity, an increase of the sucrose phosphate synthase activity was observed. The maximum activity of the acid and neutral invertases was reached at 14 and 21 d, respectively, after 21 d of acclimatization period. There was a marked tendency for the activity of both enzymes to decrease. The sucrose content was decreased only in the first 7 d. The metabolism of sugarcane plantlets seemed to be susceptible to the environmental changes during the acclimatization phase but did not contribute to inhibitory factors for normal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Aragón C.; Escalona M.; Capote I.; Pina P.; Cejas I.; Rodríguez R. et al. Photosynthesis and carbon metabolism in plantain (Musa AAB) growing in temporary immersion bioreactor (TIB) and ex vitro acclimatization. In Vitro Cell Dev Biol-Plant 414: 550–554; 2005 doi:10.1079/IVP2005640.

    Article  CAS  Google Scholar 

  • Aragón C.; Escalona M.; Capote I.; Pina P.; Cejas I.; Rodríguez R. et al. Aclimatización de plantas de plátano “CEMSA 3/4 (AAB)” provenientes de Biorreactores de Inmersión Temporal. Importancia metabólica del almidón INFOMUSA 152: 32–35; 2006.

    Google Scholar 

  • Carvalho L. C.; Amancio S. Antioxidant defence system in plantlets transferred from in vitro to ex vitro: Effects of increasing light and CO2 concentration. Plant Sci 1621: 33–40; 2002 doi:10.1016/S0168-9452(01)00524-6.

    Article  CAS  Google Scholar 

  • Carvalho L. C.; Osorio M. L.; Chaves M. M.; Amancio S. Chlorophyll fluorescence as an indicator of photosynthetic functioning of in vitro grapevine and plantlets under ex vitro acclimatization. Plant Cell Tiss Org Cult 67: 271–280; 2001.

    Article  Google Scholar 

  • Crafts-Brandner S. J.; Salvucci M. E. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129: 1773–1780; 2002 doi:10.1104/pp.002170.

    Article  PubMed  CAS  Google Scholar 

  • Du Y. C.; Nose A.; Wasano K.; Uchida Y. Response to water stress of enzyme activities and metabolite levels in relation to sucrose and starch synthesis, the Calvin cycle and C4 pathway in sugarcane (Saccharum sp). Aust J Plant Physiol 25: 253–260; 1998.

    CAS  Google Scholar 

  • Estrada-Luna A. A.; Davies F. T.; Egilla J. N. Physiological change and growth of micropropagated chile ancho pepper plantlets during acclimatization and post-acclimatization. Plant Cell Tiss Org Cult 66: 17–24; 2001 doi:10.1023/A:1010606430060.

    Article  CAS  Google Scholar 

  • Geigenberger P.; Stitt M. A futile cycle of sucrose synthesis and degradation is involved in regulating partitioning between sucrose starch and respiration in cotyledons of germinating Ricinus comunis L. seedlings when phloem transport is inhibited. Planta 185: 81–90; 1991.

    CAS  Google Scholar 

  • Fila G.; Badeck F.; Meyer S.; Ceroviv Z.; Ghashghaie J. Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. J Exp Bot 5711: 2687–2695; 2006 doi:10.1093/jxb/erl040.

    Article  PubMed  CAS  Google Scholar 

  • Huber S. C.; Akazawa T. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells. Plant Physiol 81: 1008–1013; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Huber S. C.; Huber J. L. Activation of sucrose-phosphate synthase from darkened spinach leaves by an endogenous protein phosphatase. Arch Biochem Biophys 282: 421–426; 1990 doi:10.1016/0003-9861(90)90138-O.

    Article  PubMed  CAS  Google Scholar 

  • Hymus G. J.; Baker N. R.; Long S. P. Growth in elevated CO2 can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner. Dactylis glomerata grown in two levels of nitrogen nutrition. Plant Physiol 127: 1204–1211; 2001 doi:10.1104/pp.127.3.1204.

    Article  PubMed  CAS  Google Scholar 

  • Kadlecek P.; Ticha I.; Haisel D.; Capkova V.; Schafer C. Importance of in vitro pretreatment for ex vitro acclimatization and growth. Plant Sci 161: 695–701; 2001 doi:10.1016/S0168-9452(01)00456-3.

    Article  CAS  Google Scholar 

  • Lorenzo J. C.; Gonzalez B. L.; Escalona M.; Teisson C.; Espinosa P.; Borroto C. Sugarcane shoots formation in an improved temporary immersion system. Plant Cell Tiss Org Cult 54: 197–200; 1998 doi:10.1023/A:1006168700556.

    Article  CAS  Google Scholar 

  • Miron D.; Schaffer A. A. Sucrose phosphate synthase, sucrose synthase and invertase activities in developing fruit of Lycopersicon hirsutum Humb. Plant Physiol 95: 623–627; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Moore P. H. Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Aust J Plant Physiol 22: 661–679; 1995.

    Article  CAS  Google Scholar 

  • Moore P. H.; Maretzki A. Sugarcane. In: ZamskiE.; SchafferA. A. (eds) Photoassimilate distribution in plants and crops, vol. 27. Marcel Dekker, New York, pp 643–665; 1999.

    Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15: 473–479; 1962 doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Nguyen-Quoc B.; Krivitzki M. S.; Huber C.; Lecharny A. Sucrose synthesis in developing maize leaves. Plant Physiol 94: 516–523; 1990.

    Article  PubMed  Google Scholar 

  • Nguyen Q. T.; Kozai T. Growth of in vitro banana (Musa spp.) shoots under photomixotrophic and photoautotrophic conditions. In Vitro Cell Dev Biol-Plant 37: 824–829; 2001 doi:10.1007/s11627-001-0137-4.

    Article  Google Scholar 

  • Pollock C. J.; Lloyd E. J. The distribution of acid invertase in developing leaves of Lolium temulentum L. Planta 133: 197–200; 1977 doi:10.1007/BF00391919.

    Article  CAS  Google Scholar 

  • Pospísilová J.; Synkova H.; Haisel D.; Catsky J.; Wilhelmova N.; Sramek F. Effect of elevated CO2 concentration on acclimatization of tobacco plantlets to ex vitro conditions. J Exp Bot 50330: 119–126; 1999 doi:10.1093/jexbot/50.330.119.

    Article  Google Scholar 

  • Stitt M.; Quick W. P. Photosynthetic carbon partitioning: its regulation and possibilities for manipulation. Physiol Plant 77: 633–641; 1989 doi:10.1111/j.1399-3054.1989.tb05402.x.

    Article  CAS  Google Scholar 

  • Ulman P.; Catsky J.; Pospísilová J. Photosynthetic traits in wheat grown under decreased and increased CO2 concentration, and after transfer to natural CO2 concentration. Biol Plant 432: 227–237; 2000 doi:10.1023/A:1002752210237.

    Article  Google Scholar 

  • Vanle L.; Samson G.; Desjardins Y. Opposite effects of exogenous sucrose on growth, photosynthesis and carbon metabolism of in vitro plantlets of tomato (Lycopesicon esculentum Mill.) grown under two levels of irradiance and CO2 concentration. J Plant Physiol 158: 599–605; 2001 doi:10.1078/0176-1617-00315.

    Article  Google Scholar 

  • Van Huylenbroeck J. M. Influence of light stress during the acclimatization of in vitro plantlets. In: StruikP. C. (ed) Plant production on the threshold of a new century. Kluwer Academic, Dordrecht, pp 451–453; 1994.

    Google Scholar 

  • Van Huylenbroeck J. M.; De Riek J. Sugar and starch metabolism during ex vitro rooting and acclimatization of micropropagated Spathiphyllum “petite” plantlets. Plant Sci 111: 19–25; 1995 doi:10.1016/0168-9452(95)04223-H.

    Article  Google Scholar 

  • Van Huylenbroeck J. M.; Debergh P. C. Impact of sugar concentration in vitro on photosynthesis and carbon metabolism during ex vitro acclimatization of Spathiphyllum plantlets. Physiol Plant 96: 298–304; 1996 doi:10.1111/j.1399–3054.1996.tb00217.x.

    Article  Google Scholar 

  • Van Huylenbroeck J. M.; Huygens H.; Deberg P. C. Photoinhibition during acclimatization of micropropagated Spathiphyllum ‘petite’ plantlets. In Vitro Cell Dev Biol-Plant 31: 160–164; 1995 doi:10.1007/BF02632013.

    Article  Google Scholar 

  • Van Huylenbroeck J. M.; Piqueras A.; Debergh P. C. Photosynthesis and carbon metabolism in leaves formed prior and during ex vitro acclimatization of micropropagated plants. Plant Sci 134: 21–30; 1998 doi:10.1016/S0168-9452(98)00043-0.

    Article  Google Scholar 

  • Van Huylenbroeck J. M.; Piqueras A.; Debergh P. C. The evolution of photosynthesis capacity and the antioxidant enzymatic system during acclimatization of micro propagated Calathea plants. Plant Sci 155: 59–66; 2000 doi:10.1016/S0168-9452(00)00201-6.

    Article  PubMed  Google Scholar 

  • Wang C. W.; Tillberg J. E. Effects of nitrogen deficiency on accumulation of fructan and fructan metabolizing enzyme activities in sink and leaves of barley (Hordeum vulgare). Physiol Plant 97: 339–345; 1996 doi:10.1034/j.1399-3054.1996.970218.x.

    Article  CAS  Google Scholar 

  • Wedler R.; Veinth R.; Dancer J.; Stitt M.; Komor E. Sucrose storage in cell suspension culture of Saccharum sp. (sugarcane) is regulated by a cycle of synthesis and degradation. Planta 183: 31–39; 1990.

    Google Scholar 

  • Yue D.; Gosselin A.; Desjardins Y. Re-examination of the photosynthetic capacity of in vitro-culture strawberry plantlets. J Am Soc Hort Sci 118: 419–424; 1993.

    Google Scholar 

Download references

Acknowledgement

We thank The International Foundation for Science (IFS) for their financial support of this work (Project C/3570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romelio Rodriguez.

Additional information

Editor: Michael Edward Kane

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, R., Aragon, C.E., Escalona, M. et al. Carbon metabolism in leaves of micropropagated sugarcane during acclimatization phase. In Vitro Cell.Dev.Biol.-Plant 44, 533–539 (2008). https://doi.org/10.1007/s11627-008-9142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9142-1

Keywords

Navigation