Skip to main content
Log in

Production, Purification, and Characterization of a β-Glucosidase of Penicillium funiculosum NCL1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Penicillium funiculosum NCL1, a filamentous fungus, produced significantly higher levels of β-glucosidase. The effect of initial pH, incubation temperature, and different carbon sources on extracellular β-glucosidase production was studied in submerged fermentation. At 30 °C with initial pH 5.0, enzyme production was increased by 48-fold upon induction with paper mill waste, as compared to commercial cellulose powder. In zymogram analysis, four isoforms of β-glucosidases were observed with wheat bran whereas a minimum of one isoform was observed with other carbon sources. A major β-glucosidase (Bgl3A) with the apparent molecular weight of ~120 kDa, induced by paper mill waste, was purified 19-fold to homogeneity, with a specific activity of 1,796 U/mg. Bgl3A was a monomeric glycoprotein with 29% of neutral carbohydrate content. It showed optimum activity at pH 4.0 and 5.0, optimum temperature at 60 °C, and exhibited a half-life of 1 h at 60 °C. K m of Bgl3A was found to be 0.057 mM with p-nitrophenyl β-d-glucoside and V max was 1,920 U/mg. The purified enzyme exhibited glucose tolerance with a K i of 1.5 mM. Bgl3A readily hydrolyzed glucosides with β-linkage. Bgl3A activity was enhanced (156%) by Zn2+ and was not affected by other metal cations and reagents. The supplementation of Bgl3A (5 U/mg) with Trichoderma reesei cellulase complex (5 FPU/mg) resulted in about 70% of enhanced glucose production, which emphasizes the industrial importance of Bgl3A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  2. Saha, B. C., Freer, S. N., & Bothast, R. J. (1994). Applied and Environmental Microbiology, 60, 3774–3780.

    CAS  Google Scholar 

  3. Ahmed, S., Riaz, S., & Jamil, A. (2009). Applied Microbiology and Biotechnology, 84, 19–35.

    Article  CAS  Google Scholar 

  4. Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., & Xi, Y. (2008). Bioresource Technology, 99, 7623–7629.

    Article  CAS  Google Scholar 

  5. Lis, H., & Sharon, N. (1993). European Journal of Biochemistry, 218, 1–27.

    Article  CAS  Google Scholar 

  6. Bhiri, F., Chaabouni, S. E., Limam, F., Ghrir, R., & Marzouki, N. (2008). Applied Biochemistry and Biotechnology, 149, 169–182.

    Article  CAS  Google Scholar 

  7. Shi, Q. Q., Sun, J., Yu, H. L., Li, C. X., Bao, J., & Xu, J. H. (2011). Applied Biochemistry and Biotechnology, 164, 819–830.

    Article  CAS  Google Scholar 

  8. Szijarto, N., Szengyel, Z., Liden, G., & Reczey, K. (2004). Applied Biochemistry and Biotechnology, 113–116, 115–124.

    Article  Google Scholar 

  9. Kantham, L., & Jagannathan, V. (1985). Biotechnology and Bioengineering, 27, 786–791.

    Article  CAS  Google Scholar 

  10. Mandels, M., & Reese, E. T. (1957). Journal of Bacteriology, 73, 269–278.

    CAS  Google Scholar 

  11. Mandels, M., & Weber, J. (1969). Advances in Chemsitry Series, 95, 394–404.

    Google Scholar 

  12. Singhania, R. R., Sukumaran, R. K., Rajasree, K. P., Mathew, A., Gottumukkala, L., & Pandey, A. (2011). Process Biochemistry, 46, 1521–1524.

    Article  CAS  Google Scholar 

  13. Elyas, K. K., Mathew, A., Sukumaran, R. K., Ali, P. P., Sapna, K., Kumar, S. R., & Mol, K. R. (2010). New Biotechnology, 27, 347–351.

    Article  CAS  Google Scholar 

  14. Menon, K., Rao, K. K., & Pushalkar, S. (1994). Indian Journal of Experimental Biology, 32, 706–709.

    CAS  Google Scholar 

  15. Ng, I. S., Li, C. W., Chan, S. P., Chir, J. L., Chen, P. T., Tong, C. G., Yu, S. M., & Ho, T. H. D. (2010). Bioresource Technology, 101, 1310–1317.

    Article  CAS  Google Scholar 

  16. Prasetyo, J., Sumitha, S., Okuda, N., & Park, E. Y. (2010). Applied Biochemistry and Biotechnology, 162, 52–61.

    Article  CAS  Google Scholar 

  17. Lee, K. M., Joo, A. R., Jeya, M., Lee, K. M., Moon, H. J., & Lee, J. K. (2011). Applied Biochemistry and Biotechnology, 163, 25–39.

    Article  CAS  Google Scholar 

  18. Jeya, M., Joo, A. R., Lee, K. M., Tiwari, M. K., Lee, K. M., Kim, S. H., & Lee, L. K. (2009). Applied Microbiology and Biotechnology, 86, 1473–1484.

    Article  Google Scholar 

  19. Kumar, R., Singh, S., & Singh, O. V. (2008). Indian Journal of Microbial Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  20. Kang, L., Wang, W., & Lee, Y. Y. (2010). Applied Biochemistry and Biotechnology, 161, 53–66.

    Article  CAS  Google Scholar 

  21. Rho, D., Desrochers, J., Jurasek, L., Driguez, H., & Defaye, J. (1982). Journal of Bacteriology, 149, 47–53.

    CAS  Google Scholar 

  22. Weil, J., Westgate, P., Kohlman, K., & Ladisch, M. R. (1994). Enzyme Microbiology and Technology, 16, 1002–1004.

    Article  CAS  Google Scholar 

  23. Saibi, W., Amouri, B., & Gargouri, A. (2007). Applied Microbiology and Biotechnology, 77, 293–300.

    Article  CAS  Google Scholar 

  24. Decker, C. H., Visser, J., & Schreier, P. (2001). Applied Microbiology and Biotechnology, 55, 157–163.

    Article  CAS  Google Scholar 

  25. Takashima, S., Nakamura, A., Hidaka, M., Masaki, H., & Uozumi, T. (1999). Journal of Biochemistry, 125, 728–736.

    Article  CAS  Google Scholar 

  26. Sun, X., Liu, Z., Qu, Y., & Li, X. (2008). Applied Biochemistry and Biotechnology, 146, 119–128.

    Article  CAS  Google Scholar 

  27. Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Critical Reviews in Biotechnology, 22, 375–407.

    Article  CAS  Google Scholar 

  28. Hong, J., Tamaki, H., & Kumagai, H. (2006). Applied Microbiology and Biotechnology, 73, 80–88.

    Article  CAS  Google Scholar 

  29. Tsukada, T., Igarashi, K., Yoshida, M., & Samejima, M. (2006). Applied Microbiology and Biotechnology, 73, 807–814.

    Article  CAS  Google Scholar 

  30. Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Applied Biochemistry and Biotechnology, 102–103, 367–369.

    Article  Google Scholar 

  31. Wallecha, A., & Mishra, S. (2003). Biochimica et Biophysica Acta, 1649, 74–84.

    Article  CAS  Google Scholar 

  32. Korotkova, O. G., Semenova, M. V., Morozova, V. V., Zorov, I. N., Sokolova, L. M., Bubnova, T. M., Okunev, O. N., & Sinitsyn, A. P. (2009). Biochemistry (Mosc), 74, 569–577.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Sheik Asraf and Manjula for their valuable technical advice and discussion. We acknowledge the Council of Scientific and Industrial Research, India for financial support through a research grant (no. 5/258/51/2006-NMITLI). The Centre for Advanced Studies in Functional Genomics, The Centre for Excellence in Genomic Sciences, and the Networking Resource Centre in Biological Sciences are gratefully acknowledged for their support facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramasamy Gunasekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramani, G., Meera, B., Vanitha, C. et al. Production, Purification, and Characterization of a β-Glucosidase of Penicillium funiculosum NCL1. Appl Biochem Biotechnol 167, 959–972 (2012). https://doi.org/10.1007/s12010-012-9645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9645-4

Keywords

Navigation