Skip to main content
Log in

Monitoring of Chicken Meat Quality By Plant Dye Based Sensor

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Chicken is one of the most preferred protein sources for nonvegetarian consumers around the world. Due to the huge demand for quality chicken products, the processors and the suppliers need to maintain the optimum chicken quality during the supply chain. Therefore, this study was aimed to develop a suitable device to monitor chicken quality in supply chain. In the present study, a natural dye extracted from coleus blumei leaves (Plectranthus scutellarioides) has been used to develop a chicken quality monitoring sensor. This sensor has been tested for its color-changing ability by attaching inside the packet of fresh chicken at different storage temperatures viz., 4 ± 1, 10 ± 1, 15 ± 1, 25 ± 1, and 37 ± 1 °C. During the storage of chicken the changes in quality parameters (physicochemical, microbiological, and sensory attributes) were measured at regular intervals. The sensor showed a color change during the progress of the storage period and this was well in concurrence with the changes in the quality parameters of the chicken. The results showed the potentiality of the coleus blumei leaves dye-based sensor as a monitoring device to detect the quality of chicken during its storage at various temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd El Atty, S. E., Bauer, F., & Paulsen, P. (1997). Shelf-life of poultry: Chemical and microbiological changes during storage and spoilage. World congress on food hygiene. 1997, August 24–29, The Hague, The Netherlands. Proceedings, p 227.

  • Akhtar, M. J., Jacquot, M., & Desobry, S. (2014). Effect of HPMC–anthocyanin packaging color and oxygen permeability on salmon oil preservation. Food and Bioprocess Technology, 7, 93–104.

    Article  CAS  Google Scholar 

  • APHA. (2001). Compendium of method for microbiological examination of food (4th ed.). Speck M.L. American Public Health Association.

    Google Scholar 

  • Ayu, A.C., Ida, M., Moelyono, M., & Fakhriati, S.G. (2018). Total Anthocyanin Content and Identification of Anthocyanidin From Plectranthus Scutellarioides (L.) R. Br Leaves. Research Journal of Chemistry and Environment, 22(I), 11–17.

  • Ayres, J. C., Ogilvy, W. S., & Stewart, G. F. (1950). Post mortem changes in stored meats. I. Microorganisms associated with development of slime on eviscerated cut-up poultry. Food Technology, 4, 199–205.

    Google Scholar 

  • Azarpazhooh, E., Sharayei, P., Zomorodi, S., & Ramaswamy, H. S. (2019). Physicochemical and phytochemical characterization and storage stability of freeze-dried encapsulated pomegranate peel anthocyanin and in vitro evaluation of its antioxidant activity. Food and Bioprocess Technology, 12, 199–210.

    Article  CAS  Google Scholar 

  • Barnes, E. M., & Ingram, M. (1955). Changes in oxidation reduction potential of sternocephalicus muscle of the horse after death in relation to the development of bacterial growth. Journal of the Science of Food and Agriculture, 6, 448.

    Article  CAS  Google Scholar 

  • Bell, W. N., & Shelef, L. A. (1978). Availability of fat level and cooking methods on sensory and textural properties of ground beef patties. Journal of Food Science, 432, 315–318.

    Article  Google Scholar 

  • Bkowska, A., Kucharska, A. Z., & Oszmian, S. J. (2003). The effects of heating, UV irradiation, and storage on stability of the anthocyanin–polyphenol copigment complex. Food Chemistry, 81(3), 349–355.

    Article  Google Scholar 

  • Boranbayeva, T., Karadeniz, F., & Yılmaz, E. (2014). Effect of storage on anthocyanin degradation in black mulberry juice and concentrates. Food and Bioprocess Technology, 7, 1894–1902. https://doi.org/10.1007/s11947-014-1296-8

    Article  CAS  Google Scholar 

  • Byun, J. S., Min, J. S., Kim, I. S., Kim, J. W., Chung, M. S., & Lee, M. (2003). Comparison of indicators of microbial quality of meat during aerobic cold storage. Journal of Food Protection, 66, 1733–1737.

    Article  PubMed  Google Scholar 

  • Cavani, C., Petracci, M., Trocino, A., & Xiccato, G. (2009). Advances in research on poultry and rabbit meat quality. Italian Journal of Animal Science 8(2), 741–750.

    Article  Google Scholar 

  • Chen, P. J., & Antonelli, M. (2020). Conceptual Models of Food Choice: Influential Factors Related to Foods, Individual Differences, and Society. Foods, 9(12), 1–21. https://doi.org/10.3390/foods9121898

    Article  CAS  Google Scholar 

  • Chouliara, E., Badeka, A., Savvaidis, I. N., & Kontominas, M. G. (2008). Combined effect of irradiation and modified atmosphere packaging on shelf life extension of chicken breast meat: Microbiological, chemical, and sensory changes. European Food Research and Technology, 226, 877–888.

    Article  CAS  Google Scholar 

  • Davies, A. J., & Mazza, G. (1992). Separation and characterization of anthrocyanine of monardafistulosa by high performance liquid chromatography. Journal of Agricultural Food Chemistry, 40, 1341–1345.

    Article  CAS  Google Scholar 

  • de Moura, S. C. S. R., da Rocha Tavares, P. E., Germer, S. P. M., Nisida, A. L. A. C., Alves, A. B., & Kanaan, A. S. (2012). Degradation kinetics of anthocyanin of traditional and low-sugar blackberry jam. Food and Bioprocess Technology, 5, 2488–2496.

    Article  Google Scholar 

  • Diao, X., Huan, Y., & Chitrakar, B. (2020). Extending the shelf life of ready-to-eat spiced chicken meat: Garlic aqueous extracts-carboxymethyl chitosan ultrasonicated coating solution. Food and Bioprocess Technology, 13, 786–796. https://doi.org/10.1007/s11947-020-02428-7

    Article  CAS  Google Scholar 

  • Dong, M., Chen, H., Zhang, Y., Xu, Y., Han, M., Xu, X., & Zhou, G. (2020). Processing properties and improvement of pale, soft, and exudative-like chicken meat: A Review. Food and Bioprocess Technology, 13, 1280–1291. https://doi.org/10.1007/s11947-020-02464-3

    Article  Google Scholar 

  • Doulgeraki, A. I., Ercolini, D., Villani, F., & Nychas, G. J. E. (2012). Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology, 157, 130–141.

    Article  PubMed  Google Scholar 

  • Duncan, D. B. (1995). Multiple range and multiple F test. Biometrics, 1, 1–8.

    Google Scholar 

  • El Barbri, N., Llobet, E., El Bari, N., Correig, X., & Bouchikhi, B. (2008). Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat. Sensors, 8, 142–156.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang, Z., Zhao, Y., Warner, R. D., & Johnson, S. K. (2017). Active and intelligent packaging in meat industry. Trends in Food Science and Technology, 61, 60–71.

    Article  CAS  Google Scholar 

  • FSSAI. (2016). Food Safety and Standards (Food Products Standards and Food Additives) Tenth Amendment Regulations. The Gazette of India Extraordinary. New Delhi, India: Food Safety and Standard Authority of India.

  • Ghosh, P., Pradhan, R. C., Mishra, S., & Rout, P. K. (2018). Quantification and concentration of anthocyanidin from Indian blackberry (jamun) by combination of ultra- and nano-filtrations. Food and Bioprocess Technology, 11, 2194–2203.

    Article  CAS  Google Scholar 

  • Han, J. H. (2005). New technologies in food packaging: Overview. In J. H. Han (Ed.), Innovations in food packaging (pp. 3–11). Elsevier Academic Press.

    Chapter  Google Scholar 

  • Huang, J., Hu, Z., Li, G., Chen, J., & Hu, Y. (2022). The positive influences of roselle anthocyanin active film on shrimp (Penaeus vannamei) sensory attribute modification. Food and Bioprocess Technology, 15(11), 2483–2498.

    Article  CAS  Google Scholar 

  • Huang, R., & Liu, D. H. (2010). Freshness evaluation of pork as well as its problems and counter measures. Meat Industry, 6, 43–46.

    Google Scholar 

  • Jaiswal, R. K., Mendiratta, S. K., Talukdar, S., Soni, A., & Bomminayuni, G. B. (2018). Comparative evaluation of dye reduction tests for assessment of microbial quality of chevon. International Journal of Livestock Research, 8(3), 133–139.

    Google Scholar 

  • Khattak, M. M. A. K., Taher, M., Abdulrahman, S., Bakar, I. A., Damanik, R., & Yahaya, A. (2013). Anti-bacterial and anti-fungal activity of coleus leaves consumed as breast-milk stimulant. Nutrition & Food Science, 43(6), 582–590.

    Article  Google Scholar 

  • Kozacinski, L., Cvrtila, F. Z., Kozacinski, Z., Filipovic, I., Mitak, M., Bratulic, M., & Mikus, T. (2012). Evaluation of shelf life of pre-packed cut poultry meat. Veterinary Archive, 82(1), 47–58.

    Google Scholar 

  • Kuswandi, B., Jayus, A., Restyana, A., & Abdullah. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control, 25, 184–189.

    Article  CAS  Google Scholar 

  • Lafarga, T., Ruiz-Aguirre, I., Abadias, M., Viñas, I., Bobo, G., & Aguiló-Aguayo, I. (2019). Effect of thermosonication on the bioaccessibility of antioxidant compounds and the microbiological, physicochemical, and nutritional quality of an anthocyanin-enriched tomato juice. Food and Bioprocess Technology, 12, 147–157.

    Article  CAS  Google Scholar 

  • Metivier, R. P., Francis, F. J., & Clydesdale, F. M. (1980). Solvent extraction of anthocyanins from wine pomace. Journal of Food Science, 45, 1099–1100.

    Article  CAS  Google Scholar 

  • Miller, L.S. (1968). Relationships of extract-release volume and reduction of resazurin and tetrazolium dyes to microbial contamination of pork. M.S. Thesis, Michigan state university, USA.

  • Mahendra, N. A., Lestari, T., & Aprillia, A. Y. (2020). Utilization of anthocyanin extract from rambutan fruit rind (Nephelium lappaceum l.) as an indicator of the quality on freshness meat. Advances in Health Sciences Research, 26, 44–48.

    Google Scholar 

  • Mol, S., Erkan, N., Ucok, D., & Tosun, S. Y. (2007). Effect of Psychrophilic bacteria to estimate fish quality. Journal of Muscle Foods, 18, 120–128.

    Article  CAS  Google Scholar 

  • Morsy, M. K., Morsy, O. M., Abdelmonem, M. A., & Elsabagh, R. (2022). Anthocyanin-colored microencapsulation effects on survival rate of Lactobacillus rhamnosus gg, color stability, and sensory parameters in strawberry nectar model. Food and Bioprocess Technology, 15, 352–367.

    Article  CAS  Google Scholar 

  • Nowak, A., Rygala, A., Oltuszak-Walczak, E., & Walczak, P. (2012). The prevalence and some metabolic traits of Brochothrix thermosphacta in meat and meat products packaged in different ways. Journal of the Science of Food and Agriculture, 92, 1304–1310.

    Article  CAS  PubMed  Google Scholar 

  • Ozunlu, O., & Ergezer, H. (2022). Development of novel paper-based colorimetric indicator labels for monitoring shelf life of chicken breast fillets. Journal of Food Processing and Preservation, 46(11), e17013.

    Article  Google Scholar 

  • Ozgen, S., & Sarıoglu, K. (2013). Synthesis and characterization of acrylonitrile-co-divinylbenzene (an/dvb) polymeric resins for the isolation of aroma compounds and anthocyanins from strawberry. Food and Bioprocess Technology, 6, 2884–2894.

    Article  CAS  Google Scholar 

  • Pap, N., Mahosenaho, M., Pongrácz, E., Mikkonen, H., Jaakkola, M., Virtanen, V., Myllykoski, M., Horváth-Hovorka, Z., Hodúr, C., Vatai, G., & Keiski, R. L. (2012). Effect of ultrafiltration on anthocyanin and flavonol content of black currant juice (Ribes nigrum L.). Food and Bioprocess Technology, 5, 921–928.

    Article  CAS  Google Scholar 

  • Pataro, G., Bobinaitė, R., Bobinas, C., Šatkauskas, S., Raudonis, R., Visockis, M., Ferrari, G., & Viškelis, P. (2017). Improving the extraction of juice and anthocyanins from blueberry fruits and their by-products by application of pulsed electric fields. Food and Bioprocess Technology, 10, 1595–1605.

    Article  CAS  Google Scholar 

  • Pathade, K. S., Patil, S. B., Konda-war, M. S., Naik-wade, N. S., & Magdum, C. S. (2009). Morus Alba Fruit-Herbal Alternative to Synthetic Acid Base Indicators. International Journal Chemical Research, 1(3), 549–551.

    CAS  Google Scholar 

  • Pearson, D. (1968). Methods related to protein break down. Journal Science Food Agriculture, 19(3), 366–369.

    Article  Google Scholar 

  • Pereira, V. A., de Arruda, I. N. Q., & Stefani, R. (2015). Stefani R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as time-temperature indicators for application in intelligent food packaging. Food Hydrocolloid, 43, 180–188.

    Article  CAS  Google Scholar 

  • Puvaˇca, N., Tufarelli, V., & Giannenas, I. (2022). Essential Oils in Broiler Chicken Production, Immunity and Meat Quality: Review of Thymus vulgaris, Origanum vulgare, and Rosmarinus officinalis. Agriculture, 12, 874.

    Article  Google Scholar 

  • Raab, V., & Kreyenschmidt, J. (2008). Requirements for the effective implementation of innovative tools for temperature monitoring supporting cold chain management in poultry supply chains. In Proceedings of the 3rd International Workshop “Cold Chain-Management” (J. Kreyenschmidt, ed.), pp. 259–264, Bonner Universitätsdruckerei, Bonn, Germany.

  • Ristic, M., & Damme, K. (2013). Significance of pH-value for meat quality of broilers – Influence of breed lines. Veterinarski Glasnik, 67(1–2), 67–73.

    Article  Google Scholar 

  • Samelis, J., & Sofos, J. N. (2003).Yeasts in meat and meat products. In: Boekhout, T. and Robert, V. eds. Yeasts in food. Beneficial and detrimental aspects. Hamburg, Behr’s Verlag GmbH. 239–265p.

  • Sant’Anna, V., Marczak, L.D.F., & Tessaro, I.C. (2013). Kinetic modeling of anthocyanin extraction from grape marc. Food and Bioprocess Technology, 6, 3473–3480.

    Article  Google Scholar 

  • Sastry, V.R.B., Kamra, D.N., & Pathak, N.N. (1999). Estimation of ammonia nitrogen. Laboratory manual of Animal Nutrition, IVRI, Izatnagar, India.

  • Seabra, I. J., Braga, M. E. M., Batista, M. T. P., & de Sousa, H. C. (2010). Fractioned high pressure extraction of anthocyanins from elderberry (Sambucus nigra L.) pomace. Food and Bioprocess Technology, 3, 674–683.

    Article  CAS  Google Scholar 

  • Stănciuc, N., Turturică, M., Oancea, A. M., Barbu, V., Ioniţă, E., Aprodu, I., & Râpeanu, G. (2017). Microencapsulation of anthocyanins from grape skins by whey protein isolates and different polymers. Food and Bioprocess Technology, 10, 1715–1726.

    Article  Google Scholar 

  • Stoll, L., Costa, T. M. H., Jablonski, A., Flôres, S. H., & de Oliveira Rios, A. (2016). Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food and Bioprocess Technology, 9, 172–181.

    Article  CAS  Google Scholar 

  • Strange, E. D., Benedict, R. C., Smith, J. L., & Swift, C. E. (1977). Evaluation of rapid test for monitoring alteration in meat quality during storage. Journal of Food Protection, 40, 843–847.

    Article  CAS  PubMed  Google Scholar 

  • Sui, X., Yap, P. Y., & Zhou, W. (2015). Anthocyanins during baking: Their degradation kinetics and impacts on color and antioxidant capacity of bread. Food and Bioprocess Technology, 8, 983–994.

    Article  CAS  Google Scholar 

  • Swami, J. N., Raut, S. S., & Rindhe, S. N. (2015). Effect of freeze-thaw cycle on quality of rabbit meat. Haryana Veterinarian, 54(2), 160–163.

    Google Scholar 

  • Talukder, S., & Mendiratta, S. (2017). Exploring Purple Leaf Sandcherry (Prunuscistena) Extracts Based Indicator to Monitor Meat Quality during Storage at 10±1° C. International Journal Livestock Research, 7(8), 214–220.

    Google Scholar 

  • Talukder, S., Mendiratta, S. K., Kumar, R. R., Agarwal, R. K., Soni, A., Chand, S., Singh, T. P., & Sharma, H. (2017). Development of Plant Extracts Based Indicator for Monitoring Quality of Fresh Chicken Meat During Storage at Room Temperature (25±1° C). Journal Animal Research, 7(4), 751–755.

    Article  Google Scholar 

  • Talukder, S., Mendiratta, S. K., Kumar, R. R., Agrawal, R. K., Soni, A., Luke, A., & Chand, S. (2020). Jamun fruit (Syzgium cumini) skin extract based indicator for monitoring chicken patties quality during storage. Journal of Food Science and Technology, 57(2), 537–548.

    Article  CAS  PubMed  Google Scholar 

  • Trout, E. S., Hunt, M. C., Johnson, D. E., Claus, J. R., Kastner, C. L., & Kropt, D. H. (1992). Characteristics of low fat ground beef containing texture modifying ingredients. Journal of Food Science, 57, 19–24.

    Article  Google Scholar 

  • Tuncer, B., & Sireli, U. T. (2008). Microbial growth on broiler carcasses stored at different temperatures after air- or water-chilling. Poultry Science, 87, 793–799.

    Article  CAS  PubMed  Google Scholar 

  • Vapa Tankosić, J., Hanić, H., & Bugarčić, M. (2022). Consumer’s characteristics and attitudes towards organic food products in times of covid-19 pandemic. Economics of Agriculture, 69(2), 469–481.

    Google Scholar 

  • Yusoff, A., Kumara, N. T. R. N., Lim, A., Ekanayake, P., & Tennakoon, K. U. (2014). Impacts of temperature on the stability of tropical plant pigments as sensitizers for dye sensitized solar cells. Journal Biophysics, 1, 1–8.

    Article  Google Scholar 

  • Zhang, Q. Q., Han, Y. Q., Cao, J., Xu, X. L., Zhou, G. H., Zhang, W., & Y. (2012). The spoilage of air-packaged broiler meat during storage at normal and fluctuating storage temperatures. Poultry Science, 91, 208–214.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X. H., Lu, S. S., & Chen, X. (2014). A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sensors Actuators B-Chemistry, 198, 268–273.

    Article  CAS  Google Scholar 

  • Zhao, F., Wei, Z., Zhou, G., Kristiansen, K., & Wang, C. (2022). Effects of different storage temperatures on bacterial communities and functional potential in pork meat. 2307. https://doi.org/10.3390/foods11152307.

  • Zivkovic, J. (1986). Meat Hygiene and Technology. Publisher Veterinary Faculty University of Zagreb. (In Croatian).

    Google Scholar 

Download references

Acknowledgements

This study was a part of the MoFPI funded project (SERB/MOFPI/0019/2014). The authors would like to thank MoFPI, Govt. of India, New Delhi, Director ICAR-IVRI, JD(R), HoD LPT, for their valuable technical support.

Funding

This research work was funded by the MoFPI (SERB/MOFPI/0019/2014), Govt. of India, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

Suman Talukder: Term, Conceptualization, Formal analysis, Validation, Visualization, Supervision, Writing—Review & Editing; Sanjod Kumar Mendiratta: Investigation, Funding acquisition; Ashim Kumar Biswas: Writing—Review & Editing; Kandeepan G.: Conceptualization; Rajiv Ranjan Kumar: Supervision, Writing—Review & Editing; RaviKant Aggrawal: Investigation; Arvind Soni: Formal analysis, Validation; Devendra Kumar: Writing—Review & Editing; Tanbir Ahmed: Writing—Review & Editing; I. Prince Devadason: Supervision, Writing; Sagar Chand: Formal analysis, Validation.

Corresponding author

Correspondence to Suman Talukder.

Ethics declarations

Data Availability

Data can be provided upon request from the corresponding author.

Conflict of Interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukder, S., Mendiratta, S.K., Biswas, A.K. et al. Monitoring of Chicken Meat Quality By Plant Dye Based Sensor. Food Bioprocess Technol 16, 2217–2230 (2023). https://doi.org/10.1007/s11947-023-03062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03062-9

Keywords

Navigation