Skip to main content
Log in

Combined effect of irradiation and modified atmosphere packaging on shelf-life extension of chicken breast meat: microbiological, chemical and sensory changes

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In the present study the combined effect of gamma irradiation (2 and 4 kGy) and modified atmosphere packaging (MAP) (30% CO2/70% N2 and 70% CO2/30% N2) on shelf life extension of fresh chicken meat stored under refrigeration was investigated. The study was based on microbiological (TVC, Pseudomonas spp., Lactic Acid Bacteria, Yeasts, Brochothrix thermosphacta, Enterobacteriaceae), physicochemical (pH, TBA, color) and sensory (odor, taste) changes occurring in chicken samples. Microbial populations were reduced by 1–5 log cfu/g for a given sampling day depending on the specific treatment. The effect was more pronounced in the case of the combination of MAP (70% CO2/30% N2) and the higher irradiation dose of 4 kGy. Of the chemical indicators of spoilage, TBA values for all treatments remained lower than 1 mg malondialdehyde (MDA)/kg meat throughout the 25 day storage period. pH values varied between 6.4 (day 0) and 5.9 (day 25). The values of the color parameters L*, a* and b* were not considerably affected by MAP. Irradiation resulted in a small increase of the parameter a*. Irradiation had a greater effect in extending the shelf life of chicken as compared to MAP. Sensory evaluation showed that the combination of irradiation at 4 kGy and MAP (70% CO2/30% N2) resulted in the highest shelf-life extension by 12 days compared to the air packaged samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbut S (2002) Poultry products processing. An industry guide. CRC, London

    Google Scholar 

  2. Desrosier NW (1970) The technology of food preservation, 3rd edn. AVI, Westport

    Google Scholar 

  3. Lee M, Sebranek JG, Olson DG, Dickson JS (1996) J Food Protect 59:62–72

    CAS  Google Scholar 

  4. Kanatt SR, Chander R, Sharma A (2005) Meat Sci 69:269–275

    Article  Google Scholar 

  5. Thayer DW, Fox JB Jr, Lakritz L (1993) In: Amer. Chem. Soc. ACS Symp. Ser., vol 528, p 293, Washington, DC

  6. EC/3/1999, Directive of the European Parliament. On the establishment of a Community list of foods and food ingredients treated with ionizing radiation

  7. Greek State Official Newspaper (2000) On the establishment of a Greek list of foods and food ingredients treated with ionizing radiation, November 9, 2000, Athens, Greece

  8. Farkas J (1998) Int J Microbiol 44:189–204

    Article  CAS  Google Scholar 

  9. Kampelmacher EH (1983) Food Technol 37:117–119, 169

    Google Scholar 

  10. Kiss I, Farkas J (1972) Acta Aliment 1:73–86

    Google Scholar 

  11. Lakritz L, Fox JB, Thayer DW (1998) Thiamin, riboflavin and alpha-tocopherol content of exotic meats and loss due to gamma irradiation. J Food Prot 61(12):1681–1683

    CAS  Google Scholar 

  12. Olson DG (1998) Irradiation of food. Food Technol 52(1):56–62

    Google Scholar 

  13. Graham WD, Stevenson MH, Steward EM (1998) Effect of irradiation dose and irradiation temperature on the thiamin contant of raw and cooked chicken breast meat. J Sci Food Agric 78(4):559–564

    Article  Google Scholar 

  14. Delincee H (1998) Detection of food treated with ionizing radiation. Trends Food Sci Technol 9(2):73–82

    Article  CAS  Google Scholar 

  15. Narasimha Rao D, Sachindra NM (2002) Food Rev Int 18(4):263–293

    Google Scholar 

  16. Zhao Y, Wells JH, McMillin KW (1994) J Muscle Foods 5:299–328

    Article  CAS  Google Scholar 

  17. Davies AP (1995) Advances of MAP. In: Gould GW (ed) Natural antimicrobial systems and food preservation. Blackie, Glasgow, pp 304–320

    Google Scholar 

  18. Gill CO, Jones T (1996) Meat Sci 42:203

    Article  Google Scholar 

  19. Dixon NM, Kell DB (1989) J Appl Bacter 67:109–136

    CAS  Google Scholar 

  20. Patsias A, Chouliara I, Savvaidis IN, Kontominas MG (2006) Food Microbiol 23:423–429

    Article  CAS  Google Scholar 

  21. Gill CO, Tan KH (1980) Appl Environ Microbiol 39:317–319

    CAS  Google Scholar 

  22. Luno M, Beltran JA, Roncales P (1998) Meat Sci 48:75–78

    Article  Google Scholar 

  23. Farber JM (1991) J Food Protect 94:58–70

    Google Scholar 

  24. Grant IR, Patterson MF (1991) Int J Food Sci Technol 26:521–533

    Google Scholar 

  25. Lambert AD, Smith JP, Dodds KL (1991) J Food Protect 54:94–101

    CAS  Google Scholar 

  26. Thayer DW, Boyd G (1991) Poult Sci 70:381–388

    CAS  Google Scholar 

  27. Stecchini ML, Sarais I, Del Torre M, Fuochi PG (1995) Rad Phys Chem 46:779–784

    Article  CAS  Google Scholar 

  28. Bagorogoza K, Bowers J, Okot-Kotber M (2001) J Food Sci 66:367–372

    Article  CAS  Google Scholar 

  29. Mead GC, Adams BW (1977) British Poult Sci 18:661–670

    Article  CAS  Google Scholar 

  30. Gardner GA (1966) J Appl Bacter 29:455–460

    CAS  Google Scholar 

  31. Mossel DAA, Eelderink L, Koopmans M, Rossem FV (1979) J Food Protect 42:470–475

    Google Scholar 

  32. Pearson D (1991) Composition and analysis of foods. In: Kirk R, Sawyer R (eds) Longman Scientific & Technical, London, pp 642–643

  33. Du M, Hur SJ, Ahn DU (2002) Meat Sci 61:49–54

    Article  Google Scholar 

  34. Chouliara I, Kontominas MG (2006) Combined effect of thyme essential oil and modified atmosphere packaging to extend shelf life of fresh chicken meat. In: Govil JN, Singh VK, Almad K, Sharma RK (eds) Recent progress in medicinal plants: natural products, vol 15. Studium Press, LLC, USA, pp 423–442

  35. Dawson PL, Hon H, Vollet LM, Clardy LB, Martinez RM, Acton JC (1995) Poult Sci 14:1381–1387

    Google Scholar 

  36. ICMFS, International Commission on Microbiological Specifications for Foods (1986) Sampling for microbiological analysis: principles and scientific applications, 2nd edn, vol 2. University of Toronto Press, Toronto

  37. Kakouri A, Nychas GJE (1994) J Appl Bacteriol 16:163–172

    Google Scholar 

  38. Byun M-W, Lee J-W, Yook H-S, Lee K-H, Kim H-Y (2002) Rad Phys Chem 63:361–364

    Article  CAS  Google Scholar 

  39. Ingram M, Thornley MJ (1959) Int J Appl Radiat Isotop 6:122–128

    Article  CAS  Google Scholar 

  40. Mercuri AJ, Kotula AW, Sanders DH (1966) Poult Sci 45:1105

    Google Scholar 

  41. Lescano G, Narvaiz P, Kairiyama E, Kaupert N (1991) Lebensm Wiss Technol 24:130–134

    CAS  Google Scholar 

  42. Jay JM (1992) Modern food microbiology, 5th edn. Chapman & Hall, New York

    Google Scholar 

  43. Skandamis P, Nychas G-JE (2002) Int J Food Microbiol 79:35–45

    Article  CAS  Google Scholar 

  44. Chouliara I, Samelis I, Kakouri A, Badeka A, Savvaidis IN, Riganakos K, Kontominas MG (2006) Meat Sci 74:303–311

    Article  CAS  Google Scholar 

  45. Labadie J (1999) Meat Sci 52:299–305

    Article  Google Scholar 

  46. Zeitoun AAM, Debevere JM, Mossel DAA (1994) Food Microbiol 11:169–176

    Article  Google Scholar 

  47. Badr HM (2004) Meat Sci 67:541–548

    Article  Google Scholar 

  48. Olson DG (1998) Food Technol 52:56–62

    Google Scholar 

  49. Yildirim I, Uzunlu S, Topuz A (2005) Food Control 16:363–367

    Article  CAS  Google Scholar 

  50. Zaika LL, Kissinger JG, Wasserman AE (1983) J Food Sci 48:1455–1459

    Article  Google Scholar 

  51. Kim J, Marshall MR, Wei C-I (1995a) J Agric Food Chem 43:2839–2845

    Article  CAS  Google Scholar 

  52. Hampson JM (1996) Meat Sci 42(3):271–276

    Article  CAS  Google Scholar 

  53. Nam KC, Ahn DU (2002) Meat Sci 60:25–33

    Article  CAS  Google Scholar 

  54. Katusin-Ramez B, Mihaljevic KW, Rzem D (1992) J Food Saf 17:283–294

    Google Scholar 

  55. Chouliara I, Savvaidis I, Riganakos K, Kontominas MG (2005) J Sci Food Agric 85:779–784

    Article  CAS  Google Scholar 

  56. Millar SJ, Moss BW, Stevenson MH (2000) Meat Sci 55:361–370

    Article  Google Scholar 

  57. Du M, Hur SJ, Nam KC, Ismail H, Ahn DU (2001) Poult Sci 80:1748–1753

    CAS  Google Scholar 

  58. Jo C, Ahn DU (2000) J Food Sci 65:612–616

    Article  CAS  Google Scholar 

  59. Patterson M (1996) Rad Phys Chem 48:367–368

    Article  Google Scholar 

  60. Kahan RS, Howker JJ (1978) Low dose irradiation of fresh, non-frozen chicken and other preservation methods for shelf-life extension and for improving its public health quality. In: Proceedings series, food preservation by irradiation, vol 11, IAEA-SM-221/36

  61. Jay JM (1986) Microbial spoilage indicators and metabolites. In: Pierson MD, Stern A (eds) Foodborne microorganisms, their toxins. Developing methodology. Marcel Dekker Inc, Basel, pp 213–240

  62. Skandamis P, Nychas G-JE (2001) J Appl Microbiol 91:1011–1022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Kontominas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chouliara, E., Badeka, A., Savvaidis, I. et al. Combined effect of irradiation and modified atmosphere packaging on shelf-life extension of chicken breast meat: microbiological, chemical and sensory changes. Eur Food Res Technol 226, 877–888 (2008). https://doi.org/10.1007/s00217-007-0610-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0610-3

Keywords

Navigation