Skip to main content

Advertisement

Log in

Interventional Strategies in Cancer-induced Cardiovascular Disease

  • Cardio-oncology (EH Yang, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To highlight the range of illnesses and procedures that the interventional onco-cardiologists face in their daily practice, along with the recent additions to anti-cancer therapies and their related cardiotoxicity.

Recent findings

Immune checkpoint inhibitors (ICI) are not devoid of cardiotoxicity as thought earlier and lead to an increased incidence of myocarditis. Transcatheter valve replacement has been shown to be a safer alternative to surgical replacement in cancer patients.

Summary

Interventional onco-cardiology is a novel field that addresses cardiovascular diseases in the setting of cancer. Traditionally excluding cancer patients from clinical trials has led to a dearth of information needed to tackle cardiac conditions like Takotsubo cardiomyopathy, malignant pericardial effusions, and radiation-induced vascular diseases encountered either exclusively or predominantly in this high-risk population. This review discusses the various treatment options available in the interventional armamentarium with a particular focus on ICI—myocarditis and transcatheter aortic valve replacement in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Koene Ryan J, et al. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133(11):1104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Winther JF, et al. Risk of cardiovascular disease among Nordic childhood cancer survivors with diabetes mellitus: a report from adult life after childhood cancer in Scandinavia. Cancer. 2018;124(22):4393–400.

    Article  PubMed  Google Scholar 

  3. Pushparaji B, et al. State-of-the-art review: interventional onco-cardiology. Curr Treat Options Cardiovasc Med. 2020;22(5):11.

    Article  Google Scholar 

  4. Oren O, Herrmann J. Arterial events in cancer patients-the case of acute coronary thrombosis. J Thorac Dis. 2018;10(Suppl 35):S4367-s4385.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Giza DE, et al. Cancer as a risk factor for cardiovascular disease. Curr Oncol Rep. 2017;19(6):39.

    Article  PubMed  Google Scholar 

  6. Meyer CC, et al. Symptomatic cardiotoxicity associated with 5-fluorouracil. Pharmacotherapy. 1997;17(4):729–36.

    CAS  PubMed  Google Scholar 

  7. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.

    Article  CAS  PubMed  Google Scholar 

  8. Cortes JE, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367(22):2075–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caldemeyer L, et al. Long-term side effects of tyrosine kinase inhibitors in chronic myeloid leukemia. Curr Hematol Malig Rep. 2016;11(2):71–9.

    Article  PubMed  Google Scholar 

  10. Ferreira M, et al. Coronary toxicities of anti-PD-1 and anti-PD-L1 immunotherapies: a case report and review of the literature and international registries. Target Oncol. 2018;13(4):509–15.

    Article  PubMed  Google Scholar 

  11. Darby SC, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.

    Article  CAS  PubMed  Google Scholar 

  12. Banasiak W, Zymliński R, Undas A. Optimal management of cancer patients with acute coronary syndrome. Polish archives of internal medicine. 2018;128(4):244–53.

    Article  PubMed  Google Scholar 

  13. Yusuf SW, et al. Treatment and outcomes of acute coronary syndrome in the cancer population. Clin Cardiol. 2012;35(7):443–50.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Velders MA, et al. Outcome after ST elevation myocardial infarction in patients with cancer treated with primary percutaneous coronary intervention. Am J Cardiol. 2013;112(12):1867–72.

    Article  PubMed  Google Scholar 

  15. Kurisu S, et al. Comparison of treatment and outcome of acute myocardial infarction between cancer patients and non-cancer patients. Int J Cardiol. 2013;167(5):2335–7.

    Article  PubMed  Google Scholar 

  16. Guddati AK, Joy PS, Kumar G. Analysis of outcomes of percutaneous coronary intervention in metastatic cancer patients with acute coronary syndrome over a 10-year period. J Cancer Res Clin Oncol. 2016;142(2):471–9.

    Article  PubMed  Google Scholar 

  17. Mohamed MO, et al. Management strategies and clinical outcomes of acute myocardial infarction in leukaemia patients: nationwide insights from United States hospitalisations. Int J Clin Pract. 2020. 74(5):e13476.

  18. Potts J, et al. Percutaneous coronary intervention and in-hospital outcomes in patients with leukemia: a nationwide analysis. Catheter Cardiovasc Interv. 2020;96(1):53–63.

    Article  PubMed  Google Scholar 

  19. Borovac JA, et al. Percutaneous coronary intervention and outcomes in patients with lymphoma in the United States (Nationwide Inpatient Sample [NIS] Analysis). Am J Cardiol. 2019;124(8):1190–7.

    Article  PubMed  Google Scholar 

  20. Potts JE, et al. Percutaneous coronary intervention in cancer patients: a report of the prevalence and outcomes in the United States. Eur Heart J. 2019;40(22):1790–800.

    Article  PubMed  Google Scholar 

  21. Oikonomou EK, et al. The effect of in-hospital acquired thrombocytopenia on the outcome of patients with acute coronary syndromes: a systematic review and meta-analysis. Thromb Res. 2016;147:64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yusuf SW, et al. Antiplatelet therapy and percutaneous coronary intervention in patients with acute coronary syndrome and thrombocytopenia. Tex Heart Inst J. 2010;37(3):336–40.

    PubMed  PubMed Central  Google Scholar 

  23. Agha AM, et al. Identifying hemostatic thresholds in cancer patients undergoing coronary angiography based on platelet count and thromboelastography. Front Cardiovasc Med. 2020; 7(9).

  24. Verma AH. Thromboelastography as a novel viscoelastic method for hemostasis monitoring: Its methodology, applications, and constraints. Glob J Transfusion Med. 2017;2(1):8–18.

  25. Iliescu C, Durand JB, Kroll M. Cardiovascular interventions in thrombocytopenic cancer patients. Tex Heart Inst J. 2011;38(3):259–60.

    PubMed  PubMed Central  Google Scholar 

  26. Liu VY, et al. Interventional cardio-oncology: adding a new dimension to the cardio-oncology field. Front Cardiovasc Med. 2018;5(48).

  27. Courtis J, et al. Usefulness of coronary fractional flow reserve measurements in guiding clinical decisions in intermediate or equivocal left main coronary stenoses. Am J Cardiol. 2009;103(7):943–9.

    Article  PubMed  Google Scholar 

  28. Bech GJ, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103(24):2928–34.

    Article  CAS  PubMed  Google Scholar 

  29. Pijls NHJ, et al. Percutaneous Coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J Am Coll Cardiol. 2007;49(21):2105–11.

    Article  PubMed  Google Scholar 

  30. Waksman R, et al. FIRST: fractional flow reserve and intravascular ultrasound relationship study. J Am Coll Cardiol. 2013;61(9):917–23.

    Article  PubMed  Google Scholar 

  31. Iliescu CA, et al. “Bringing on the light” in a complex clinical scenario: optical coherence tomography–guided discontinuation of antiplatelet therapy in cancer patients with coronary artery disease (PROTECT-OCT registry). Am Heart J. 2017;194:83–91.

    Article  PubMed  Google Scholar 

  32. Sy F, et al. Frequency of Takotsubo cardiomyopathy in postmenopausal women presenting with an acute coronary syndrome. Am J Cardiol. 2013;112(4):479–82.

    Article  PubMed  Google Scholar 

  33. Dawson DK. Acute stress-induced (takotsubo) cardiomyopathy. Heart (British Cardiac Society). 2018;104(2):96–102.

    Google Scholar 

  34. Giza DE, et al. Stress-induced cardiomyopathy in cancer patients. Am J Cardiol. 2017;120(12):2284–8.

    Article  PubMed  Google Scholar 

  35. Joy PS, Guddati AK, Shapira I. Outcomes of Takotsubo cardiomyopathy in hospitalized cancer patients. J Cancer Res Clin Oncol. 2018;144(8):1539–45.

    Article  PubMed  Google Scholar 

  36. Brunetti ND, et al. Drug treatment rates with beta-blockers and ACE-inhibitors/angiotensin receptor blockers and recurrences in takotsubo cardiomyopathy: a meta-regression analysis. Int J Cardiol. 2016;214:340–2.

    Article  PubMed  Google Scholar 

  37. Munoz E, et al. Takotsubo stress cardiomyopathy: “good news” in cancer patients? J Am Coll Cardiol. 2016;68(10):1143–4.

    Article  PubMed  Google Scholar 

  38. Gujral DM, Lloyd G, Bhattacharyya S. Radiation-induced valvular heart disease. Heart. 2016;102(4):269–76.

    Article  CAS  PubMed  Google Scholar 

  39. Hassan SA, et al. Carcinoid heart disease. Heart (British Cardiac Society). 2017;103(19):1488–95.

    CAS  Google Scholar 

  40. Mangner N, et al. Impact of active cancer disease on the outcome of patients undergoing transcatheter aortic valve replacement. J Interv Cardiol. 2018;31(2):188–96.

    Article  PubMed  Google Scholar 

  41. Watanabe Y, et al. Comparison of results of transcatheter aortic valve implantation in patients with versus without active cancer. Am J Cardiol. 2016;118(4):572–7.

    Article  PubMed  Google Scholar 

  42. Nielsen HH. Transcatheter aortic valve implantation. Dan Med J. 2012;59(12):B4556.

    PubMed  Google Scholar 

  43. Popma JJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019;380(18):1706–15.

    Article  PubMed  Google Scholar 

  44. Mack MJ, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380(18):1695–705.

    Article  PubMed  Google Scholar 

  45. Schechter M, et al. An update on the management and outcomes of cancer patients with severe aortic stenosis. Catheterization and Cardiovascular Interventions. 2018;0(0).

  46. Berkovitch A, et al. Favorable short-term and long-term outcomes among patients with prior history of malignancy undergoing transcatheter aortic valve implantation. J Invasive Cardiol. 2018;30(3):105–9.

    PubMed  Google Scholar 

  47. Sakai T, et al. Transcatheter aortic valve implantation for patients with lung cancer and aortic valve stenosis. J Thorac Dis. 2018;10(5):E387-e390.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Drevet G, et al. Transcatheter aortic valve implantation: a safe and efficient procedure to treat an aortic valve stenosis before lung cancer resection. Gen Thorac Cardiovasc Surg. 2019;67(3):321–3.

    Article  PubMed  Google Scholar 

  49. Landes U, et al. Transcatheter Aortic valve replacement in oncology patients with severe aortic stenosis. JACC Cardiovasc Interv. 2019;12(1):78–86.

    Article  PubMed  Google Scholar 

  50. Iliescu CA, et al. SCAI Expert consensus statement: evaluation, management, and special considerations of cardio-oncology patients in the cardiac catheterization laboratory (endorsed by the cardiological society of india, and sociedad Latino Americana de Cardiologıa intervencionista). Catheter Cardiovasc Interv. 2016;87(5):E202–23.

    Article  PubMed  Google Scholar 

  51. Pellikka PA, et al. Carcinoid heart disease. Clinical and echocardiographic spectrum in 74 patients. Circulation. 1993;87(4):1188–96.

  52. Hassan SA, et al. Carcinoid heart disease: a comprehensive review. Curr Cardiol Rep. 2019;21(11):140–140.

    Article  PubMed  Google Scholar 

  53. Modlin IM, Sandor A. An analysis of 8305 cases of carcinoid tumors. Cancer. 1997;79(4):813–29.

    Article  CAS  PubMed  Google Scholar 

  54. Balanescu DV, et al. The 1, 2, 3, 4 of carcinoid heart disease: comprehensive cardiovascular imaging is the mainstay of complex surgical treatment. Oncol Lett. 2019;17(5):4126–32.

    PubMed  Google Scholar 

  55. Dobson R, et al. The association of a panel of biomarkers with the presence and severity of carcinoid heart disease: a cross-sectional study. PLoS One. 2013;8(9):e73679.

  56. Connolly HM, et al. Early and late outcomes of surgical treatment in carcinoid heart disease. J Am Coll Cardiol. 2015;66(20):2189–96.

    Article  PubMed  Google Scholar 

  57. Fox DJ, Khattar RS. Carcinoid heart disease: presentation, diagnosis, and management. Heart. 2004;90(10):1224–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Heidecker B, et al. Transcatheter pulmonic valve replacement in carcinoid heart disease. Eur Heart J Cardiovasc Imaging. 2015;16(9):1046.

    CAS  PubMed  Google Scholar 

  59. Small AJ, et al. Combined transcatheter tricuspid and pulmonary valve replacement. World J Pediatr Congenit Heart Surg. 2020;11(4):432–7.

    Article  PubMed  Google Scholar 

  60. Marmagkiolis K, et al. Clinical outcomes of percutaneous mitral valve repair with MitraClip for the management of functional mitral regurgitation. Catheter Cardiovasc Interv. 2019.

  61. Taramasso M, Maisano F. Transcatheter tricuspid valve intervention: state of the art. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. 2017;13(AA):AA40–50.

  62. Krishnaswamy A, Navia J, Kapadia SR. Transcatheter tricuspid valve replacement. Interventional Cardiology Clinics. 2018;7(1):65–70.

    Article  PubMed  Google Scholar 

  63. Sogaard KK, et al. Pericarditis as a marker of occult cancer and a prognostic factor for cancer mortality. Circulation. 2017;136(11):996–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vakamudi S, Ho N, Cremer PC. Pericardial effusions: causes, diagnosis, and management. Prog Cardiovasc Dis. 2017;59(4):380–8.

    Article  PubMed  Google Scholar 

  65. Chang HM, et al. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 1. J Am Coll Cardiol. 2017;70(20):2536–51.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Iliescu C, et al. Echocardiography and fluoroscopy-guided pericardiocentesis for cancer patients with cardiac tamponade and thrombocytopenia. J Am Coll Cardiol. 2016;68(7):771–3.

    Article  PubMed  Google Scholar 

  67. Wong B, et al. The risk of pericardiocentesis. Am J Cardiol. 1979;44(6):1110–4.

    Article  CAS  PubMed  Google Scholar 

  68. Tsang TS, et al. Echocardiographically guided pericardiocentesis: evolution and state-of-the-art technique. Mayo Clin Proc. 1998;73(7):647–52.

    Article  CAS  PubMed  Google Scholar 

  69. El Haddad D, et al. Outcomes of Cancer patients undergoing percutaneous pericardiocentesis for pericardial effusion. J Am Coll Cardiol. 2015;66(10):1119–28.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Maisch B, et al. Percutaneous therapy in pericardial diseases. Cardiol Clin. 2017;35(4):567–88.

    Article  PubMed  Google Scholar 

  71. Adler Y, et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: the Task Force for the diagnosis and management of pericardial diseases of the European Society of Cardiology (ESC)Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921–64.

    Article  PubMed  Google Scholar 

  72. Navarro del Amo LF, et al. Pericardiotomía percutánea con balón en pacientes con derrame pericárdico recurrente. Revista Española de Cardiología. 2002;55(1):25–8.

  73. Caforio, A.L., et al., Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J, 2013. 34(33): p. 2636–48, 2648a-2648d.

  74. Kindermann I, et al. Predictors of outcome in patients with suspected myocarditis. Circulation. 2008;118(6):639–48.

    Article  PubMed  Google Scholar 

  75. Baccouche H, et al. Diagnostic synergy of non-invasive cardiovascular magnetic resonance and invasive endomyocardial biopsy in troponin-positive patients without coronary artery disease. Eur Heart J. 2009;30(23):2869–79.

    Article  CAS  PubMed  Google Scholar 

  76. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Johnson DB, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mahmood SS, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Salem JE, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19(12):1579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Palaskas N, et al. Immune checkpoint inhibitor myocarditis: pathophysiological characteristics, diagnosis, and treatment. J Am Heart Assoc. 2020;9(2):e013757–e013757.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Aretz HT. Myocarditis: the Dallas criteria. Hum Pathol. 1987;18(6):619–24.

    Article  CAS  PubMed  Google Scholar 

  82. Brahmer JR, et al. Management of Immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018;36(17):1714–68.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang RS, et al. Treatment of corticosteroid refractory immune checkpoint inhibitor myocarditis with Infliximab: a case series. Cardio-Oncology. 2021;7(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Balanescu DV, et al. Immunomodulatory treatment of immune checkpoint inhibitor-induced myocarditis: pathway toward precision-based therapy. Cardiovascular Pathology. 2020;107211.

  85. Donisan T, et al. In search of a less invasive approach to cardiac tumor diagnosis: multimodality imaging assessment and biopsy. JACC Cardiovasc Imaging. 2018;11(8):1191–5.

    Article  PubMed  Google Scholar 

  86. Jimenez DJ, et al. Structural Transcatheter cardiac interventions in the cardio-oncology population. Curr Treat Options Cardiovasc Med. 2021;23(3):20.

    Article  Google Scholar 

  87. Chan KL, et al. Diagnosis of left atrial sarcoma by transvenous endocardial biopsy. Can J Cardiol. 2001;17(2):206–8.

    CAS  PubMed  Google Scholar 

  88. Cooper Leslie T, et al. The role of endomyocardial biopsy in the management of cardiovascular disease. Circulation. 2007;116(19):2216–33.

    Article  CAS  PubMed  Google Scholar 

  89. Damrongwatanasuk R, Fradley MG. Cardiovascular complications of targeted therapies for chronic myeloid leukemia. Curr Treat Options Cardiovasc Med. 2017;19(4):24.

    Article  PubMed  Google Scholar 

  90. Chai-Adisaksopha C, Lam W, Hillis C. Major arterial events in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors: a meta-analysis. Leuk Lymphoma. 2016;57(6):1300–10.

    Article  CAS  PubMed  Google Scholar 

  91. Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;33(35):4210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim TD, et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia. 2013;27(6):1316–21.

    Article  CAS  PubMed  Google Scholar 

  93. Jurado JA, Bashir R, Burket MW. Radiation-induced peripheral artery disease. Catheter Cardiovasc Interv. 2008;72(4):563–8.

    Article  PubMed  Google Scholar 

  94. Dorresteijn LDA, et al. Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol. 2002;20(1):282–8.

    Article  PubMed  Google Scholar 

  95. Levenback C, et al. Arterial occlusion complicating treatment of gynecologic cancer: a case series. Gynecol Oncol. 1996;63(1):40–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cezar A. Iliescu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushparaji, B., Donisan, T., Balanescu, D.V. et al. Interventional Strategies in Cancer-induced Cardiovascular Disease. Curr Oncol Rep 23, 133 (2021). https://doi.org/10.1007/s11912-021-01113-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01113-y

Keywords

Navigation