Skip to main content

Advertisement

Log in

Personalized Approach to Cancer Treatment–Related Cardiomyopathy

  • Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise (A Hasan, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cancer treatment–related cardiotoxicity (CTRC) represents a significant cause of morbidity and mortality worldwide. The purpose of our review is to summarize the epidemiology, natural history, and pathophysiology of cardiotoxicity-related to cancer treatment. We also summarize appropriate screening, surveillance, and management of CTRC. While cardiotoxicity is characteristically associated with anthracyclines, HER2-B antagonists, and radiation therapy (XRT), there is growing recognition of toxicity with immune checkpoint inhibitors (ICI), tyrosine kinase inhibitors, and proteasome inhibitors.

Recent Findings

Patients at risk for cardiotoxicity should be screened based on available guidelines, generally with serial echocardiograms. The role of medical heart failure (HF) therapies is controversial in patients with asymptomatic left ventricular dysfunction but may be considered in some instances. Once symptomatic HF has developed, treatment should be in accordance with ACC/AHA guidelines.

Summary

The goal in caring for patients receiving cancer treatment is to optimize cardiac function and prevent interruptions in potentially lifesaving cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Figure 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reboux G. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer. September 12, 2018. Accessed November 11, 2019.

  2. American Society of Clinical Oncology. The state of cancer care in America, 2015: a report by the American Society of Clinical Oncology. Journal of Oncology Practice. 2015;11(2):79–113.

    Google Scholar 

  3. Patnaik JL, Byers T, DiGuiseppi C, Dabelea D, Denberg TD. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: a retrospective cohort study. Breast Cancer Research BCR. 2011;13(3):R64.

    PubMed  PubMed Central  Google Scholar 

  4. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32(2):302–14.

    PubMed  CAS  Google Scholar 

  5. • Chang H-M, Moudgil R, Scarabelli T, Okwuosa TM, Yeh ETH. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 1. Journal of the American College of Cardiology. 2017;70(20):2536–51. This paper discusses about the best practice guidelines for management of cancer-therapy mediated cardiomyopathy.

    PubMed  PubMed Central  Google Scholar 

  6. Zhang S, Liu X, Bawa-Khalfe T, Lu L-S, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine. 2012;18(11):1639–42.

    PubMed  Google Scholar 

  7. Ky B. In: Zypes DP, Libby P, Bonow RO, Mann DL, Tomaselli GF, Braunwald E, editors. Cardio-oncology. Braunwald’s heart disease: a textbook of cardiovascular medicine. Philadelphia: Elsevier; 2015.

    Google Scholar 

  8. Wouters KA, Kremer LCM, Miller TL, Herman EH, Lipshultz SE. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. British Journal of Haematology. 2005;131(5):561–78.

    PubMed  CAS  Google Scholar 

  9. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–8.

    PubMed  CAS  Google Scholar 

  10. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.

    PubMed  CAS  Google Scholar 

  11. • Armenian SH, Lacchetti C, Lenihan D. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline summary. Journal of Oncology Practice. 2017;13(4):270–5. This paper is a consensus document which discusses the role of close monitoring and surveillance in cancer survivors.

    PubMed  Google Scholar 

  12. Qin A, Thompson CL, Silverman P. Predictors of late-onset heart failure in breast cancer patients treated with doxorubicin. Journal of Cancer Survivorship: Research and Practice. 2015;9(2):252–9.

    Google Scholar 

  13. Armstrong GT, Joshi VM, Ness KK, Marwick TH, Zhang N, Srivastava DK, et al. Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude Lifetime Cohort Study. Journal of the American College of Cardiology. 2015;65(23):2511–22.

    PubMed  PubMed Central  Google Scholar 

  14. Vejpongsa P, Yeh ETH. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. Journal of the American College of Cardiology. 2014;64(9):938–45.

    PubMed  CAS  Google Scholar 

  15. Armenian, Saro, and Smita Bhatia. Predicting and preventing anthracycline-related cardiotoxicity. American Society of Clinical Oncology Educational Book. American Society of Clinical Oncology. Annual Meeting 38 (2018): 3–12.

  16. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. The New England Journal of Medicine. March 15, 2001;344(11):783–92.

    PubMed  CAS  Google Scholar 

  17. Keulenaer D, Gilles W, Doggen K, Lemmens K. The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circulation Research. 2010;106(1):35–46.

    PubMed  Google Scholar 

  18. •• Bloom MW, Hamo CE, Cardinale D, Ky B, Nohria A, Baer L, et al. Cancer therapy-related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. Circulation. Heart Failure. 2016;9(1):e002661. This paper provides comprehensive review of cancer therapy-related cardiomyopathy enumerating the etiology, risk factors, and screening modalities.

    PubMed  PubMed Central  Google Scholar 

  19. Procter M, Suter TM, de Azambuja E, Dafni U, van Dooren V, Muehlbauer S, et al. Longer-term assessment of trastuzumab-related cardiac adverse events in the herceptin adjuvant (HERA) trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2010;28(21):3422–8.

    Google Scholar 

  20. Advani PP, Ballman KV, Dockter TJ, Colon-Otero G, Perez EA. Long-term cardiac safety analysis of NCCTG N9831 (alliance) adjuvant trastuzumab trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. February 20, 2016;34(6):581–7.

    CAS  Google Scholar 

  21. Bowles EJ, Aiello RW, Feigelson HS, Onitilo AA, Freedman AN, Delate T, et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. Journal of the National Cancer Institute. 2012;104(17):1293–305.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. Journal of the American College of Cardiology. 2012;60(24):2504–12.

    PubMed  CAS  Google Scholar 

  23. Perez EA, Rodeheffer R. Clinical cardiac tolerability of trastuzumab. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2004;22(2):322–9.

    CAS  Google Scholar 

  24. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science (New York, N.Y.). 2001;291(5502):319–22.

    CAS  Google Scholar 

  25. Escudier M, Cautela J, Malissen N, Ancedy Y, Orabona M, Pinto J, et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation. 2017;136(21):2085–7.

    PubMed  Google Scholar 

  26. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. The New England Journal of Medicine. 2016;375(18):1749–55.

    PubMed  PubMed Central  Google Scholar 

  27. Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, et al. Myocarditis in patients treated with immune checkpoint inhibitors. Journal of the American College of Cardiology. 2018;71(16):1755–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Desai MY, Windecker S, Lancellotti P, Bax JJ, Griffin BP, Cahlon O, et al. Prevention, diagnosis, and management of radiation-associated cardiac disease: JACC Scientific Expert Panel. Journal of the American College of Cardiology. 2019;74(7):905–27.

    PubMed  Google Scholar 

  29. van Nimwegen FA, Schaapveld M, Janus CPM, Krol ADG, Petersen EJ, Raemaekers JMM, et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Internal Medicine. 2015;175(6):1007–17.

    PubMed  Google Scholar 

  30. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. The New England Journal of Medicine. March 14, 2013;368(11):987–98.

    PubMed  CAS  Google Scholar 

  31. Saiki H, Petersen IA, Scott CG, Bailey KR, Dunlay SM, Finley RR, et al. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation. April 11, 2017;135(15):1388–96.

    PubMed  PubMed Central  Google Scholar 

  32. van Nimwegen FA, Ntentas G, Darby SC, Schaapveld M, Hauptmann M, Lugtenburg PJ, et al. Risk of heart failure in survivors of Hodgkin lymphoma: effects of cardiac exposure to radiation and anthracyclines. Blood. 2017;129(16):2257–65.

    PubMed  PubMed Central  Google Scholar 

  33. Darby SC, McGale P, Taylor CW, Peto R. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. The Lancet. Oncology. August 2005;6(8):557–65.

    PubMed  Google Scholar 

  34. Patrizio L, Nkomo VT, Badano LP, Bergler-Klein J, Bergler J, Bogaert J, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography. 2013;26(9):1013–32.

    Google Scholar 

  35. Dess RT, Sun Y, Matuszak MM, Sun G, Soni PD, Bazzi L, et al. Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2017;35(13):1395–402.

    Google Scholar 

  36. Goldberg MA, Antin JH, Guinan EC, Rappeport JM. Cyclophosphamide cardiotoxicity: an analysis of dosing as a risk factor. Blood. 1986;68(5):1114–8.

    PubMed  CAS  Google Scholar 

  37. Zver S, Zadnik V, Bunc M, Rogel P, Cernelc P, Kozelj M. Cardiac toxicity of high-dose cyclophosphamide in patients with multiple myeloma undergoing autologous hematopoietic stem cell transplantation. International Journal of Hematology. 2007;85(5):408–14.

    PubMed  CAS  Google Scholar 

  38. Siegel D, Martin T, Nooka A, Harvey RD, Vij R, Niesvizky R, et al. Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica. 2013;98(11):61–1753.

    Google Scholar 

  39. Abdel-Qadir H, Ethier J-L, Lee DS, Thavendiranathan P, Amir E. Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: a systematic review and meta-analysis. Cancer Treatment Reviews. 2017;53:120–7.

    PubMed  CAS  Google Scholar 

  40. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet (London, England). 2007;370(9604):2011–9.

    CAS  Google Scholar 

  41. Di Lorenzo G, Autorino R, Bruni G, Cartenì G, Ricevuto E, Tudini M, et al. Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: a multicenter analysis. Annals of Oncology: Official Journal of the European Society for Medical Oncology. September 2009;20(9):1535–42.

    Google Scholar 

  42. Ezaz G, Long JB, Gross CP, Chen J. Risk Prediction Model for Heart Failure and Cardiomyopathy after Adjuvant Trastuzumab Therapy for Breast Cancer. Journal of the American Heart Association. 2014;3(1):e000472.

    PubMed  PubMed Central  Google Scholar 

  43. Dranitsaris G, Rayson D, Vincent M, Chang J, Gelmon K, Sandor D, et al. The development of a predictive model to estimate cardiotoxic risk for patients with metastatic breast cancer receiving anthracyclines. Breast Cancer Research and Treatment. 2008;107(3):443–50.

    PubMed  CAS  Google Scholar 

  44. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Failure Society of America. Journal of Cardiac Failure. et al., 2017;23(8):628–51.

  45. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Journal of the American College of Cardiology. 2013;62(16):e147-239.

    PubMed  Google Scholar 

  46. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging. 2014;15(10):1063–93.

    PubMed  PubMed Central  Google Scholar 

  47. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. Journal of the American College of Cardiology. 2013;61(1):77–84.

    PubMed  Google Scholar 

  48. Thavendiranathan P, Poulin F, Lim K-D, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. Journal of the American College of Cardiology. 2014;63(25 Pt A):2751–68.

    PubMed  Google Scholar 

  49. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circulation. Cardiovascular Imaging. 2012;5(5):596–603.

    PubMed  PubMed Central  Google Scholar 

  50. Negishi T. Paaladinesh Thavendiranathan, Kazuaki Negishi, Thomas H. Marwick, and SUCCOUR investigators. Rationale and design of the strain surveillance of chemotherapy for improving cardiovascular outcomes: the SUCCOUR Trial. JACC. Cardiovascular Imaging. 2018;11(8):1098–105.

    PubMed  Google Scholar 

  51. Zhang L, Awadalla M, Mahmood SS, Groarke JD, Nohria A, Liu S, et al. Late gadolinium enhancement in patients with myocarditis from immune checkpoint inhibitors. Journal of the American College of Cardiology. 2019;73(9 Supplement 1):675.

    Google Scholar 

  52. Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. Journal of the American College of Cardiology. 2000;36(2):517–22.

    PubMed  CAS  Google Scholar 

  53. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.

    PubMed  CAS  Google Scholar 

  54. Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2010;28(25):3910–6.

    CAS  Google Scholar 

  55. Romano S, Fratini S, Ricevuto E, Procaccini V, Stifano G, Mancini M, et al. Serial measurements of NT-ProBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. British Journal of Cancer. 2011;105(11):1663–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clinical Chemistry. 2005;51(8):1405–10.

    PubMed  CAS  Google Scholar 

  57. FDA Drug Label for HERCEPTIN- trastuzumab. Available at: http:// dailymed.nlm.nih.gov.ezproxy.hsclib.sunysb.edu/dailymed/drugInfo. cfm?setid = 492dbdb2-077e-4064-bff3-372d6af0a7a2%3E.

  58. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2018;36(17):1714–68.

    CAS  Google Scholar 

  59. Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Annals of Oncology: Official Journal of the European Society for Medical Oncology. 2012;23(Suppl 7):vii155–66.

    Google Scholar 

  60. Valdivieso M, Burgess MA, Ewer MS, Mackay B, Wallace S, Benjamin RS, et al. Increased therapeutic index of weekly doxorubicin in the therapy of non-small cell lung cancer: a prospective, randomized study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1984;2(3):207–14.

    CAS  Google Scholar 

  61. Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1997;15(4):1318–32.

    CAS  Google Scholar 

  62. Marty M, Espié M, Llombart A, Monnier A, Rapoport BL, Stahalova V, et al. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Annals of Oncology: Official Journal of the European Society for Medical Oncology. 2006;17(4):614–22.

    CAS  Google Scholar 

  63. Tebbi CK, London WB, Friedman D, Villaluna D, De Alarcon PA, Constine LS, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2007;25(5):493–500.

    CAS  Google Scholar 

  64. Ewer MS, Vooletich MT, Durand J-B, Woods ML, Davis JR, Valero V, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2005;23(31):7820–6.

    CAS  Google Scholar 

  65. Yu AF, Yadav NU, Eaton AA, Lung BY, Thaler HT, Liu JE, et al. Continuous trastuzumab therapy in breast cancer patients with asymptomatic left ventricular dysfunction. The Oncologist. 2015;20(10):1105–10.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Lynce F, Barac A, Geng X, Dang C, Yu AF, Smith KL, et al. Prospective evaluation of the cardiac safety of HER2-targeted therapies in patients with HER2-positive breast cancer and compromised heart function: the SAFE-HEaRt study. Breast Cancer Research and Treatment. 2019;175(3):595–603.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Azim H, Azim HA, Escudier B. Trastuzumab versus lapatinib: the cardiac side of the story. Cancer Treatment Reviews. 2009;35(7):633–8.

    PubMed  CAS  Google Scholar 

  68. Lenihan D, Suter T, Brammer M, Neate C, Ross G, Baselga J. Pooled analysis of cardiac safety in patients with cancer treated with pertuzumab. Annals of Oncology: Official Journal of the European Society for Medical Oncology. 2012;23(3):791–800.

    CAS  Google Scholar 

  69. Drost L, Yee C, Lam H, Zhang L, Wronski M, McCann C, et al. A systematic review of heart dose in breast radiotherapy. Clinical Breast Cancer. 2018;18(5):e819–24.

    PubMed  Google Scholar 

  70. Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S. Murat Meriç, and Mustafa Tarık Ağaç. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. Journal of the American College of Cardiology. 2011;58(9):988–9.

    PubMed  Google Scholar 

  71. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A. Tugrul Inanc, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. Journal of the American College of Cardiology. 2006;48(11):2258–62.

    PubMed  CAS  Google Scholar 

  72. Jhorawat R, Kumari S, Varma SC, Rohit MK, Narula N, Suri V, et al. Preventive role of carvedilol in adriamycin-induced cardiomyopathy. The Indian Journal of Medical Research. 2016;144(5):725–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Nabati M, Janbabai G, Baghyari S, Esmaili K, Yazdani J. Cardioprotective Effects of Carvedilol in Inhibiting Doxorubicin-Induced Cardiotoxicity. Journal of Cardiovascular Pharmacology. 2017;69(5):279–85.

    PubMed  CAS  Google Scholar 

  74. Salehi R, Zamani B, Esfehani A, Ghafari S, Abasnezhad M, Goldust M. Protective effect of carvedilol in cardiomyopathy caused by anthracyclines in patients suffering from breast cancer and lymphoma. The American Heart Hospital Journal. 2011;9(2):95–8.

    PubMed  Google Scholar 

  75. Georgakopoulos P, Roussou P, Matsakas E, Karavidas A, Anagnostopoulos N, Marinakis T, et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. American Journal of Hematology. 2010;85(11):894–6.

    PubMed  CAS  Google Scholar 

  76. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR, das Dores Cruz F, Brandão SMG, Rigaud VOC, et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. Journal of the American College of Cardiology. 2018;71(20):2281–90.

    PubMed  CAS  Google Scholar 

  77. Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. European Heart Journal. 2016;37(21):1671–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Bosch X, Rovira M, Sitges M, Domènech A, Ortiz-Pérez JT, de Caralt TM, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME Trial (PreventiOn of Left Ventricular Dysfunction with Enalapril and CaRvedilol in Patients Submitted to Intensive ChemOtherapy for the Treatment of Malignant HEmopathies). Journal of the American College of Cardiology. 2013;61(23):2355–62.

    PubMed  CAS  Google Scholar 

  79. Boekhout AH, Gietema JA, Kerklaan BM, van Werkhoven ED, Altena R, Honkoop A, et al. Angiotensin II-receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer: a randomized clinical trial. JAMA Oncology. 2016;2(8):1030–7.

    PubMed  Google Scholar 

  80. Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2017;35(8):870–7.

    CAS  Google Scholar 

  81. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.

    PubMed  CAS  Google Scholar 

  82. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. Journal of the American College of Cardiology. 2010;55(3):213–20.

    PubMed  CAS  Google Scholar 

  83. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. The New England Journal of Medicine. 2014;371(11):993–1004.

    PubMed  Google Scholar 

  84. Rickard J, Kumbhani DJ, Baranowski B, Martin DO, Tang WH, Wilkoff BL. Usefulness of cardiac resynchronization therapy in patients with adriamycin-induced cardiomyopathy. The American Journal of Cardiology. 2010;105(4):522–6.

    PubMed  CAS  Google Scholar 

  85. Oliveira GH, Hardaway BW, Kucheryavaya AY, Stehlik J, Edwards LB, Taylor DO. Characteristics and survival of patients with chemotherapy-induced cardiomyopathy undergoing heart transplantation. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation. 2012;31(8):805–10.

    Google Scholar 

  86. Oliveira, Guilherme H., Matthias Dupont, David Naftel, Susan L. Myers, Ya Yuan, W. H. Wilson Tang, Gonzalo Gonzalez-Stawinski, James B. Young, David O. Taylor, and Randall C. Starling. Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS Registry (Interagency Registry for Mechanically Assisted Circulatory Support). Journal of the American College of Cardiology 63, no. 3 (2014): 240–48.

    PubMed  Google Scholar 

  87. Tanindi A, Demirci U, Tacoy G, Buyukberber S, Alsancak Y, Coskun U, et al. Assessment of right ventricular functions during cancer chemotherapy. European Journal of Echocardiography: The Journal of the Working Group on Echocardiography of the European Society of Cardiology. 2011;12(11):834–40.

    Google Scholar 

Download references

Funding

Dr. Addison was supported in part by an NIH K12‐CA133250 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S Tong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slivnick, J., Vallakati, A., Addison, D. et al. Personalized Approach to Cancer Treatment–Related Cardiomyopathy. Curr Heart Fail Rep 17, 43–55 (2020). https://doi.org/10.1007/s11897-020-00453-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-020-00453-3

Keywords

Navigation