Skip to main content

Advertisement

Log in

State-of-the-art Review: Interventional Onco-Cardiology

  • Coronary Artery Disease (D Feldman and V Voudris, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

To discuss invasive cardiovascular procedures as they relate to onco-cardiology, as well as recent additions to anti-cancer therapies and their subsequent effect on cardiovascular toxicity.

Recent findings

The development of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy has been linked to cardiotoxicity and represents an emerging area of concern. Recent advances in transcatheter valve replacement have shown benefits compared with surgical management regardless of malignancy type, stage, or treatment.

Summary

With the increasing use of immunotherapy and increasing recognition of cardiotoxicity, there is a need for identifying mortality-improving strategies. The use of a transcatheter approach for aortic valve replacement looks to be a safer alternative when compared with surgical replacement despite the presence of cancer. Pericardial disease is frequent in the cancer population and pericardiocentesis represents a valid option for the treatment of significant pericardial effusions. Endomyocardial biopsy is performed for various indications in the cancer population and is the gold standard for diagnosing myocarditis and infiltrative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. Miller KD, et al. Cancer treatment and survivorship statistics. CA Cancer J Clin. 2019;69(5):363–85.

    PubMed  Google Scholar 

  2. Zaorsky NG, et al. Causes of death among cancer patients. Ann Oncol : official journal of the European Society for Medical Oncology. 2017;28(2):400–7.

    CAS  Google Scholar 

  3. Potts JE, et al. Percutaneous coronary intervention in cancer patients: a report of the prevalence and outcomes in the United States. Eur Heart J. 2018;40(22):1790–800.

    Google Scholar 

  4. Kitsis Richard N, Jaime AR, Lavandero S. Heart disease and cancer. Circulation. 2018;138(7):692–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Oren O, Herrmann J. Arterial events in cancer patients-the case of acute coronary thrombosis. J Thorac Dis. 2018;10(Suppl 35):S4367–s4385.

    PubMed  PubMed Central  Google Scholar 

  6. Iliescu CA, et al. SCAI Expert consensus statement: Evaluation, management, and special considerations of cardio-oncology patients in the cardiac catheterization laboratory (endorsed by the cardiological society of india, and sociedad Latino Americana de Cardiologıa intervencionista). Catheter Cardiovasc Interv. 2016;87(5):E202–23.

    PubMed  Google Scholar 

  7. •• Herrmann J, et al. Vascular toxicities of cancer therapies. Circulation. 2016;133(13):1272–8. The most important paper on the toxicity of cancer therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lopez-Mattei J, Kim P, Iliescu C. Editorial Commentary: Update on cardio-oncology: novel cancer therapeutics and associated cardiotoxicities. Trends Cardiovasc Med. 2019;29(1):40.

    PubMed  Google Scholar 

  9. • Marmagkiolis K, et al. Radiation toxicity to the cardiovascular system. Curr Oncol Rep. 2016;18(3):1. First experience of MitraClip in cancer patients.

  10. Zarifa A, et al. Cardiac toxicities of anticancer treatments: chemotherapy, targeted therapy and immunotherapy. Curr Opin Cardiol. 2019;34(4):441–50.

    PubMed  Google Scholar 

  11. Sorrentino MF, et al. 5-Fluorouracil induced cardiotoxicity: review of the literature. Cardiol J. 2012;19(5):453–8.

    PubMed  Google Scholar 

  12. Das SK, Das AK, William M. 5-Fluorouracil-induced acute coronary syndrome. Med J Aust. 2019;211(6):255–257.e1.

    PubMed  Google Scholar 

  13. Felix-Oliveira A, et al. Acute coronary syndrome in the oncology patient: an avoidable event? Rev Port Cardiol. 2018;37(9):791.e1–4.

    Google Scholar 

  14. Chong JH, Ghosh AK. Coronary artery vasospasm induced by 5-fluorouracil: proposed mechanisms, existing management options and future directions. Interv Cardiol. 2019;14(2):89–94.

    PubMed  PubMed Central  Google Scholar 

  15. Mosseri M, et al. In vitro evidence that myocardial ischemia resulting from 5-fluorouracil chemotherapy is due to protein kinase C-mediated vasoconstriction of vascular smooth muscle. Cancer Res. 1993;53(13):3028–33.

    CAS  PubMed  Google Scholar 

  16. Ben-Yakov M, et al. Prinzmetal angina (Coronary vasospasm) associated with 5-fluorouracil chemotherapy. Am J Emerg Med. 2017;35(7):1038.e3–5.

    Google Scholar 

  17. Ray JC, et al. A case of 5-fluorouracil-induced cardiac arrest. J Emerg Med. 2016;50(1):e1–6.

    PubMed  Google Scholar 

  18. Ma WW, et al. Emergency use of uridine triacetate for the prevention and treatment of life-threatening 5-fluorouracil and capecitabine toxicity. Cancer. 2017;123(2):345–56.

    CAS  PubMed  Google Scholar 

  19. Saif MW, Shah MM, Shah AR. Fluoropyrimidine-associated cardiotoxicity: revisited. Expert Opin Drug Saf. 2009;8(2):191–202.

    CAS  PubMed  Google Scholar 

  20. Redman JM, et al. Successful 5-fluorouracil (5-FU) infusion re-challenge in a metastatic colorectal cancer patient with coronary artery disease who experienced symptoms consistent with coronary vasospasm during first 5-FU infusion. J Gastrointest Oncol. 2019;10(5):1010–4.

    PubMed  PubMed Central  Google Scholar 

  21. Somov P, et al. Spontaneous coronary artery dissection during cisplatin and capecitabine therapy. Ann Med Surg (Lond). 2019;45:1–5.

    Google Scholar 

  22. Ozturk MA, et al. Takotsubo syndrome: an underdiagnosed complication of 5-fluorouracil mimicking acute myocardial infarction. Blood Coagul Fibrinolysis. 2013;24(1):90–4.

    CAS  PubMed  Google Scholar 

  23. Zhao D, et al. Atrial fibrillation following treatment with paclitaxel: a case report. Biomed Rep. 2018;9(6):540–4.

    PubMed  PubMed Central  Google Scholar 

  24. Rowinsky EK, et al. Cardiac disturbances during the administration of taxol. J Clin Oncol. 1991;9(9):1704–12.

    CAS  PubMed  Google Scholar 

  25. Shah K, et al. Acute non-ST elevation myocardial infarction following paclitaxel administration for ovarian carcinoma: a case report and review of literature. J Cancer Res Ther. 2012;8(3):442–4.

    PubMed  Google Scholar 

  26. Schrader C, et al. Symptoms and signs of an acute myocardial ischemia caused by chemotherapy with paclitaxel (Taxol) in a patient with metastatic ovarian carcinoma. Eur J Med Res. 2005;10(11):498–501.

    PubMed  Google Scholar 

  27. Osman M, Elkady M. A prospective study to evaluate the effect of paclitaxel on cardiac ejection fraction. Breast Care (Basel). 2017;12(4):255–9.

    Google Scholar 

  28. Berliner S, et al. Acute coronary events following cisplatin-based chemotherapy. Cancer Investig. 1990;8(6):583–6.

    CAS  Google Scholar 

  29. Karabay KO, Yildiz O, Aytekin V. Multiple coronary thrombi with cisplatin. J Invasive Cardiol. 2014;26(2):E18–20.

    PubMed  Google Scholar 

  30. Hanchate LP, Sharma SR, Madyalkar S. Cisplatin induced acute myocardial infarction and dyslipidemia. J Clin Diagn Res : JCDR. 2017;11(6):OD05–7.

    PubMed  PubMed Central  Google Scholar 

  31. Jafri M, Protheroe A. Cisplatin-associated thrombosis. Anti-Cancer Drugs. 2008;19(9):927–9.

    CAS  PubMed  Google Scholar 

  32. Meinardi MT, et al. Cardiovascular morbidity in long-term survivors of metastatic testicular cancer. J Clin Oncol. 2000;18(8):1725–32.

    CAS  PubMed  Google Scholar 

  33. Gietema JA, et al. Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer. Lancet. 2000;355(9209):1075–6.

    CAS  PubMed  Google Scholar 

  34. Huddart RA, et al. Cardiovascular disease as a long-term complication of treatment for testicular cancer. J Clin Oncol. 2003;21(8):1513–23.

    CAS  PubMed  Google Scholar 

  35. van den Belt-Dusebout AW, et al. Long-term risk of cardiovascular disease in 5-year survivors of testicular cancer. J Clin Oncol. 2006;24(3):467–75.

    PubMed  Google Scholar 

  36. Haugnes HS, et al. Cardiovascular risk factors and morbidity in long-term survivors of testicular cancer: a 20-year follow-up study. J Clin Oncol. 2010;28(30):4649–57.

    PubMed  Google Scholar 

  37. Feldman DR, Schaffer WL, Steingart RM. Late cardiovascular toxicity following chemotherapy for germ cell tumors. J Natl Compr Cancer Netw. 2012;10(4):537–44.

    CAS  Google Scholar 

  38. Bassareo PP, et al. Multimodality imaging diagnosis of multiple ventricular thrombosis and massive stroke after gemcitabine and cisplatin chemotherapy for urothelial cancer. J Cardiovasc Echogr. 2019;29(2):71–4.

    PubMed  PubMed Central  Google Scholar 

  39. Seidman A, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.

    CAS  PubMed  Google Scholar 

  40. Crone SA, et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med. 2002;8(5):459–65.

    CAS  PubMed  Google Scholar 

  41. Cardinale D, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28(25):3910–6.

    CAS  PubMed  Google Scholar 

  42. Vaklavas C, et al. Anti-vascular endothelial growth factor therapies and cardiovascular toxicity: what are the important clinical markers to target? Oncologist. 2010;15(2):130–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ranpura V, et al. Increased risk of high-grade hypertension with bevacizumab in cancer patients: a meta-analysis. Am J Hypertens. 2010;23(5):460–8.

    CAS  PubMed  Google Scholar 

  44. Ma W, et al. Cardiotoxicity of sorafenib is mediated through elevation of ROS level and CaMKII activity and dysregulation of calcium homoeostasis. Basic Clin Pharmacol Toxicol. 2019;126:166–80.

    PubMed  Google Scholar 

  45. Touyz RM, Herrmann J. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. NPJ Precis Oncol. 2018;2:13.

    PubMed  PubMed Central  Google Scholar 

  46. Park JG, et al. Long-term follow-up of complete remission of advanced hepatocellular carcinoma following sorafenib therapy: a case report. Oncol Lett. 2017;14(4):4853–6.

    PubMed  PubMed Central  Google Scholar 

  47. Sudasena D, et al. Fulminant vascular and cardiac toxicity associated with tyrosine kinase inhibitor sorafenib. Cardiovasc Toxicol. 2019;19(4):382–7.

    CAS  PubMed  Google Scholar 

  48. Zhu X, Stergiopoulos K, Wu S. Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol. 2009;48(1):9–17.

    CAS  PubMed  Google Scholar 

  49. Wu S, et al. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9(2):117–23.

    CAS  PubMed  Google Scholar 

  50. Ranpura V, et al. Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis of randomized controlled trials. Acta Oncol. 2010;49(3):287–97.

    CAS  PubMed  Google Scholar 

  51. Chu TF, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Herrmann J, Lerman A. An update on cardio-oncology. Trends Cardiovasc Med. 2014;24(7):285–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mozolevska V, et al. Role of renin-angiotensin system antagonists in the prevention of bevacizumab- and sunitinib-mediated cardiac dysfunction. Am J Physiol Heart Circ Physiol. 2019;316(3):H446–h458.

    CAS  PubMed  Google Scholar 

  54. Levato L, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in chronic myeloid leukemia: a single institution study. Eur J Haematol. 2013;90(6):531–2.

    CAS  PubMed  Google Scholar 

  55. Li L, et al. Acute ischemic intestinal necrosis as a rare side effect of nilotinib. Niger J Clin Pract. 2019;22(1):131–3.

    CAS  PubMed  Google Scholar 

  56. Latifi Y, et al. Thrombotic microangiopathy as a cause of cardiovascular toxicity from the BCR-ABL1 tyrosine kinase inhibitor ponatinib. Blood. 2019;133(14):1597–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;33(35):4210–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Barber MC, Mauro MJ, Moslehi J. Cardiovascular care of patients with chronic myeloid leukemia (CML) on tyrosine kinase inhibitor (TKI) therapy. Hematol Am Soc Hematol Educ Program. 2017;2017(1):110–4.

    Google Scholar 

  59. Suter TM, Ewer MS. Cancer drugs and the heart: importance and management. Eur Heart J. 2012;34(15):1102–11.

    PubMed  Google Scholar 

  60. Gottdiener JS, et al. Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med. 1981;141(6):758–63.

    CAS  PubMed  Google Scholar 

  61. Cesarman-Maus G, Braggio E, Fonseca R. Thrombosis in multiple myeloma (MM). Hematology. 2012;17(sup1):s177–80.

    CAS  PubMed  Google Scholar 

  62. Lyon AR, et al. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol. 2018;19(9):e447–58.

    CAS  PubMed  Google Scholar 

  63. Weber JS, Kahler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–7.

    CAS  PubMed  Google Scholar 

  64. Nishino M, et al. Anti-PD-1-related pneumonitis during cancer immunotherapy. N Engl J Med. 2015;373(3):288–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hsu CY, Su YW, Chen SC. Sick sinus syndrome associated with anti-programmed cell death-1. J Immunother Cancer. 2018;6(1):72.

    PubMed  PubMed Central  Google Scholar 

  66. Reddy N, et al. Progressive and reversible conduction disease with checkpoint inhibitors. Can J Cardiol. 2017;33(10):1335.e13–5.

    Google Scholar 

  67. Salem JE, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19(12):1579–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ederhy S, et al. Takotsubo-like syndrome in cancer patients treated with immune checkpoint inhibitors. JACC Cardiovasc Imaging. 2018;11(8):1187–90.

    PubMed  Google Scholar 

  69. Lindner AK, et al., Rare, but severe: vasculitis and checkpoint inhibitors. Eur Urol Focus, 2019.

  70. Franco F, et al. Nivolumab-associated digital small-vessel vasculitis in a patient with an advanced renal cell carcinoma. Immunotherapy. 2019;11(5):379–84.

    CAS  PubMed  Google Scholar 

  71. Wang J, et al. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol. 2010;22(6):443–52.

    CAS  PubMed  Google Scholar 

  72. Lucas JA, et al. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J Immunol. 2008;181(4):2513–21.

    CAS  PubMed  Google Scholar 

  73. Nishimura H, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001;291(5502):319–22.

    CAS  PubMed  Google Scholar 

  74. Okazaki T, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med. 2003;9(12):1477–83.

    CAS  PubMed  Google Scholar 

  75. Ferreira M, et al. Coronary toxicities of anti-PD-1 and anti-PD-L1 immunotherapies: a case report and review of the literature and international registries. Target Oncol. 2018;13(4):509–15.

    PubMed  Google Scholar 

  76. Ganatra S, neilan tg. Immune checkpoint inhibitor-associated myocarditis. Oncologist. 2018;23(8):879–86.

    PubMed  PubMed Central  Google Scholar 

  77. Mahmood SS, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Johnson DB, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.

    PubMed  PubMed Central  Google Scholar 

  79. Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    PubMed  PubMed Central  Google Scholar 

  80. Zhang L, et al. Cardiotoxicity of immune checkpoint inhibitors. Curr Treat Options Cardiovasc Med. 2019;21(7):32.

    PubMed  Google Scholar 

  81. Heinzerling L, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer. 2016;4:50.

    PubMed  PubMed Central  Google Scholar 

  82. Gramatyka M, Skorupa A, Sokol M. Nuclear magnetic resonance spectroscopy reveals metabolic changes in living cardiomyocytes after low doses of ionizing radiation. Acta Biochim Pol. 2018;65(2):309–18.

    CAS  PubMed  Google Scholar 

  83. Han X, Zhou Y, Liu W. Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy. NPJ Precis Oncol. 2017;1(1):31.

    PubMed  PubMed Central  Google Scholar 

  84. Darby SC, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.

    CAS  PubMed  Google Scholar 

  85. Dess RT, et al. Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J Clin Oncol. 2017;35(13):1395–402.

    PubMed  PubMed Central  Google Scholar 

  86. McEniery PT, et al. Clinical and angiographic features of coronary artery disease after chest irradiation. Am J Cardiol. 1987;60(13):1020–4.

    CAS  PubMed  Google Scholar 

  87. Veinot JP, Edwards WD. Pathology of radiation-induced heart disease: a surgical and autopsy study of 27 cases. Hum Pathol. 1996;27(8):766–73.

    CAS  PubMed  Google Scholar 

  88. Virmani R, et al. Comparative pathology: radiation-induced coronary artery disease in man and animals. Semin Interv Cardiol. 1998;3(3–4):163–72.

    CAS  PubMed  Google Scholar 

  89. Orzan F, et al. Severe coronary artery disease after radiation therapy of the chest and mediastinum: clinical presentation and treatment. Br Heart J. 1993;69(6):496–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zamorano JL, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.

    PubMed  Google Scholar 

  91. Lenihan DJ, Cuculich P. Cardioprotection during therapeutic radiation treatment. Circ Heart Fail. 2018;11(8):e005294.

    PubMed  Google Scholar 

  92. Chun SG, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG Oncology RTOG 0617 randomized clinical trial. J Clin Oncol. 2017;35(1):56–62.

    PubMed  Google Scholar 

  93. Chang JY, et al. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in stage I or stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006;65(4):1087–96.

    PubMed  Google Scholar 

  94. Shah C, et al. Cardiac dose sparing and avoidance techniques in breast cancer radiotherapy. Radiother Oncol. 2014;112(1):9–16.

    PubMed  Google Scholar 

  95. Verma V, Shah C, Mehta MP. Clinical outcomes and toxicity of proton radiotherapy for breast cancer. Clin Breast Cancer. 2016;16(3):145–54.

    PubMed  Google Scholar 

  96. Kammerer E, et al. Proton therapy for locally advanced breast cancer: a systematic review of the literature. Cancer Treat Rev. 2018;63:19–27.

    PubMed  Google Scholar 

  97. Taylor CW, et al. Exposure of the heart in breast cancer radiation therapy: a systematic review of heart doses published during 2003 to 2013. Int J Radiat Oncol Biol Phys. 2015;93(4):845–53.

    PubMed  Google Scholar 

  98. Chang HM, et al. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 1. J Am Coll Cardiol. 2017;70(20):2536–51.

    PubMed  PubMed Central  Google Scholar 

  99. Gujral DM, Lloyd G, Bhattacharyya S. Radiation-induced valvular heart disease. Heart. 2016;102(4):269–76.

    CAS  PubMed  Google Scholar 

  100. Faggiano P, et al. Prevalence of comorbidities and associated cardiac diseases in patients with valve aortic stenosis. Potential implications for the decision-making process. Int J Cardiol. 2012;159(2):94–9.

    PubMed  Google Scholar 

  101. Nielsen HH. Transcatheter aortic valve implantation. Dan Med J. 2012;59(12):B4556.

    PubMed  Google Scholar 

  102. Leon MB, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363(17):1597–607.

    CAS  PubMed  Google Scholar 

  103. Popma JJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019;380(18):1706–15.

    PubMed  Google Scholar 

  104. Mack MJ, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380(18):1695–705.

    PubMed  Google Scholar 

  105. Watanabe Y, et al. Comparison of results of transcatheter aortic valve implantation in patients with versus without active cancer. Am J Cardiol. 2016;118(4):572–7.

    PubMed  Google Scholar 

  106. Schechter M, et al. An update on the management and outcomes of cancer patients with severe aortic stenosis. Catheter Cardiovasc Interv. 2018;94(3):438–45 0(0).

    PubMed  Google Scholar 

  107. Landes U, et al. Transcatheter aortic valve replacement in oncology patients with severe aortic stenosis. JACC Cardiovasc Interv. 2019;12(1):78–86.

    PubMed  Google Scholar 

  108. Mangner N, et al. Impact of active cancer disease on the outcome of patients undergoing transcatheter aortic valve replacement. J Interv Cardiol. 2018;31(2):188–96.

    PubMed  Google Scholar 

  109. Berkovitch A, et al. Favorable short-term and long-term outcomes among patients with prior history of malignancy undergoing transcatheter aortic valve implantation. J Invasive Cardiol. 2018;30(3):105–9.

    PubMed  Google Scholar 

  110. Kogoj P, Devjak R, Bunc M. Balloon aortic valvuloplasty (BAV) as a bridge to aortic valve replacement in cancer patients who require urgent non-cardiac surgery. Radiol Oncol. 2014;48(1):62–6.

    PubMed  PubMed Central  Google Scholar 

  111. Balanescu SM, et al. The onco-cardiologist dilemma: to implant, to defer, or to avoid transcatheter aortic valve replacement in cancer patients with aortic stenosis? Curr Cardiol Rep. 2019;21(8):83.

    PubMed  Google Scholar 

  112. • Marmagkiolis K, et al. Clinical outcomes of percutaneous mitral valve repair with MitraClip for the management of functional mitral regurgitation. Catheter Cardiovasc Interv. 2019;94(6):820–6. The most complete manuscript explaining the the mechanisms of radiation-induced toxicity.

    PubMed  Google Scholar 

  113. Cerillo AG, et al. Transapical transcatheter valve-in-valve implantation for failed mitral bioprostheses: gradient, symptoms, and functional status in 18 high-risk patients up to 5 years. Ann Thorac Surg. 2016;102(4):1289–95.

    PubMed  Google Scholar 

  114. Drury JH, Labovitz AJ, Miller LW. Echocardiographic guidance for endomyocardial biopsy. Echocardiography. 1997;14(5):469–74.

    PubMed  Google Scholar 

  115. Balanescu DV, et al. The 1, 2, 3, 4 of carcinoid heart disease: comprehensive cardiovascular imaging is the mainstay of complex surgical treatment. Oncol Lett. 2019;17(5):4126–32.

    PubMed  Google Scholar 

  116. Kesarwani M, et al. First-in-human transcatheter pulmonic valve implantation through a tricuspid valve bioprosthesis to treat native pulmonary valve regurgitation caused by carcinoid syndrome. JACC Cardiovasc Interv. 2015;8(10):e161–3.

    PubMed  Google Scholar 

  117. Khan JN, et al. Transcatheter pulmonary and tricuspid valve-in-valve replacement for bioprosthesis degeneration in carcinoid heart disease. Eur Heart J Cardiovasc Imaging. 2016;17(1):114.

    PubMed  Google Scholar 

  118. Loyalka P, et al. Transcatheter pulmonary valve replacement in a carcinoid heart. Tex Heart Inst J. 2016;43(4):341–4.

    PubMed  PubMed Central  Google Scholar 

  119. Conradi L, et al. Carcinoid heart valve disease: transcatheter pulmonary valve-in-valve implantation in failing biological xenografts. J Heart Valve Dis. 2015;24(1):110–4.

    PubMed  Google Scholar 

  120. Whitlock MC, et al. Cancer and its association with the development of coronary artery calcification: an assessment from the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2015;4(11):e002533.

    PubMed  PubMed Central  Google Scholar 

  121. Navi BB, et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol. 2017;70(8):926–38.

    PubMed  PubMed Central  Google Scholar 

  122. Fuster V, et al. Atherothrombosis and high-risk plaque: part I: evolving concepts. J Am Coll Cardiol. 2005;46(6):937–54.

    PubMed  Google Scholar 

  123. Meyer CC, et al. Symptomatic cardiotoxicity associated with 5-fluorouracil. Pharmacotherapy. 1997;17(4):729–36.

    CAS  PubMed  Google Scholar 

  124. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.

    CAS  PubMed  Google Scholar 

  125. Czaykowski PM, Moore MJ, Tannock IF. High risk of vascular events in patients with urothelial transitional cell carcinoma treated with cisplatin based chemotherapy. J Urol. 1998;160(6 Pt 1):2021–4.

    CAS  PubMed  Google Scholar 

  126. Caldemeyer L, et al. Long-term side effects of tyrosine kinase inhibitors in chronic myeloid leukemia. Curr Hematol Malig Rep. 2016;11(2):71–9.

    PubMed  Google Scholar 

  127. Schutz FA, et al. Bevacizumab increases the risk of arterial ischemia: a large study in cancer patients with a focus on different subgroup outcomes. Ann Oncol. 2011;22(6):1404–12.

    CAS  PubMed  Google Scholar 

  128. Torres M, Moayedi S. Evaluation of the acutely dyspneic elderly patient. Clin Geriatr Med. 2007;23(2):307–25.

    PubMed  Google Scholar 

  129. Yusuf SW, et al. Treatment and outcomes of acute coronary syndrome in the cancer population. Clin Cardiol. 2012;35(7):443–50.

    PubMed  PubMed Central  Google Scholar 

  130. Mamas MA, et al. Prevalence and impact of co-morbidity burden as defined by the Charlson co-morbidity index on 30-day and 1- and 5-year outcomes after coronary stent implantation (from the Nobori-2 Study). Am J Cardiol. 2015;116(3):364–71.

    PubMed  Google Scholar 

  131. Guddati AK, Joy PS, Kumar G. Analysis of outcomes of percutaneous coronary intervention in metastatic cancer patients with acute coronary syndrome over a 10-year period. J Cancer Res Clin Oncol. 2016;142(2):471–9.

    PubMed  Google Scholar 

  132. Levine GN, et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines: an update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention, 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease, 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction, 2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes, and 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. Circulation. 2016;134(10):e123–55.

    PubMed  Google Scholar 

  133. Iliescu CA, et al. “Bringing on the light” in a complex clinical scenario: optical coherence tomography–guided discontinuation of antiplatelet therapy in cancer patients with coronary artery disease (PROTECT-OCT registry). Am Heart J. 2017;194:83–91.

    PubMed  Google Scholar 

  134. Lee DH, de la torre hernandez jm. The newest generation of drug-eluting stents and beyond. Eur Cardiol. 2018;13(1):54–9.

    PubMed  PubMed Central  Google Scholar 

  135. Akashi YJ, et al. Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation. 2008;118(25):2754–62.

    PubMed  PubMed Central  Google Scholar 

  136. Lee S, et al. Stress-induced cardiomyopathy during pulmonary resection (Takotsubo syndrome) - a case report. Korean J Thorac Cardiovasc Surg. 2011;44(4):294–7.

    PubMed  PubMed Central  Google Scholar 

  137. van de Donk NW, et al. Takotsubo cardiomyopathy following radioiodine therapy for toxic multinodular goitre. Neth J Med. 2009;67(10):350–2.

    PubMed  Google Scholar 

  138. Sharkey SW, et al. Natural history and expansive clinical profile of stress (Tako-Tsubo) cardiomyopathy. J Am Coll Cardiol. 2010;55(4):333–41.

    PubMed  Google Scholar 

  139. Komamura K, et al. Takotsubo cardiomyopathy: pathophysiology, diagnosis and treatment. World J Cardiol. 2014;6(7):602–9.

    PubMed  PubMed Central  Google Scholar 

  140. Giza DE, et al. Stress-Induced cardiomyopathy in cancer patients. Am J Cardiol. 2017;120(12):2284–8.

    PubMed  Google Scholar 

  141. Munoz E, et al. Takotsubo stress cardiomyopathy: “good news” in cancer patients? J Am Coll Cardiol. 2016;68(10):1143–4.

    PubMed  Google Scholar 

  142. Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J. 2008;155(3):408–17.

    PubMed  Google Scholar 

  143. Boden WE, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16.

    CAS  PubMed  Google Scholar 

  144. De Bruyne B, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371(13):1208–17.

    PubMed  Google Scholar 

  145. Elting LS, et al. Incidence, cost, and outcomes of bleeding and chemotherapy dose modification among solid tumor patients with chemotherapy-induced thrombocytopenia. J Clin Oncol. 2001;19(4):1137–46.

    CAS  PubMed  Google Scholar 

  146. Iliescu C, et al. Safety of diagnostic and therapeutic cardiac catheterization in cancer patients with acute coronary syndrome and chronic thrombocytopenia. Am J Cardiol. 2018;122(9):1465–70.

    PubMed  Google Scholar 

  147. Iliescu C, et al. Safety of diagnostic and therapeutic cardiac catheterization in cancer patients with acute coronary syndrome and chronic thrombocytopenia. Am J Cardiol. 2018;122(9):1465–70.

    PubMed  Google Scholar 

  148. Iliescu C, Durand J-B, Kroll M. Cardiovascular interventions in thrombocytopenic cancer patients. Tex Heart Inst J. 2011;38(3):259–60.

    PubMed  PubMed Central  Google Scholar 

  149. Yeh ET, et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation. 2004;109(25):3122–31.

    PubMed  Google Scholar 

  150. Jaworski C, et al. Cardiac complications of thoracic irradiation. J Am Coll Cardiol. 2013;61(23):2319–28.

    PubMed  Google Scholar 

  151. Williams PD, et al. Right and left heart catheterization via an antecubital fossa vein and the radial artery--a prospective study. J Invasive Cardiol. 2014;26(12):669–73.

    PubMed  Google Scholar 

  152. Singh V, et al. Comparison of utilization trends, indications, and complications of endomyocardial biopsy in native versus donor hearts (from the Nationwide Inpatient Sample 2002 to 2014). Am J Cardiol. 2018;121(3):356–63.

    PubMed  Google Scholar 

  153. Cooper Leslie T, et al. The role of endomyocardial biopsy in the management of cardiovascular disease. Circulation. 2007;116(19):2216–33.

    CAS  PubMed  Google Scholar 

  154. Ishibashi-Ueda H, et al. Significance and value of endomyocardial biopsy based on our own experience. Circ J. 2017;81(4):417–26.

    CAS  PubMed  Google Scholar 

  155. Francis R, Lewis C. Myocardial biopsy: techniques and indications. Heart. 2018;104(11):950–8.

    PubMed  Google Scholar 

  156. Anderson JL, Marshall HW. The femoral venous approach to endomyocardial biopsy: comparison with internal jugular and transarterial approaches. Am J Cardiol. 1984;53(6):833–7.

    CAS  PubMed  Google Scholar 

  157. Ardehali H, Kasper EK, Baughman KL. Diagnostic approach to the patient with cardiomyopathy: whom to biopsy. Am Heart J. 2005;149(1):7–12.

    PubMed  Google Scholar 

  158. Brooksby IA, et al. Left-ventricular endomyocardial biopsy. Lancet. 1974;2(7891):1222–5.

    CAS  PubMed  Google Scholar 

  159. Escher F, et al. Analysis of endomyocardial biopsies in suspected myocarditis—Diagnostic value of left versus right ventricular biopsy. Int J Cardiol. 2014;177(1):76–8.

    CAS  PubMed  Google Scholar 

  160. Miller LW, et al. Echocardiography-guided endomyocardial biopsy. A 5-year experience. Circulation. 1988;78(5 Pt 2):Iii99–102.

    CAS  PubMed  Google Scholar 

  161. From AM, Maleszewski JJ, Rihal CS. Current status of endomyocardial biopsy. Mayo Clin Proc. 2011;86(11):1095–102.

    PubMed  PubMed Central  Google Scholar 

  162. Kreher SK, et al. Frequent occurrence of occult pulmonary embolism from venous sheaths during endomyocardial biopsy. J Am Coll Cardiol. 1992;19(3):581–5.

    CAS  PubMed  Google Scholar 

  163. Sandhu JS, et al. Coronary artery fistula in the heart transplant patient. A potential complication of endomyocardial biopsy. Circulation. 1989;79(2):350–6.

    CAS  PubMed  Google Scholar 

  164. Wong RC, et al. Tricuspid regurgitation after cardiac transplantation: an old problem revisited. J Heart Lung Transplant. 2008;27(3):247–52.

    PubMed  Google Scholar 

  165. Caforio AL, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(33):2636–48 2648a-2648d.

    PubMed  Google Scholar 

  166. Kindermann I, et al. Predictors of outcome in patients with suspected myocarditis. Circulation. 2008;118(6):639–48.

    PubMed  Google Scholar 

  167. Baccouche H, et al. Diagnostic synergy of non-invasive cardiovascular magnetic resonance and invasive endomyocardial biopsy in troponin-positive patients without coronary artery disease. Eur Heart J. 2009;30(23):2869–79.

    CAS  PubMed  Google Scholar 

  168. Veinot JP. Endomyocardial biopsy--when and how? Cardiovasc Pathol. 2011;20(5):291–6.

    PubMed  Google Scholar 

  169. Leone O, et al. 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc Pathol. 2012;21(4):245–74.

    PubMed  Google Scholar 

  170. Caforio ALP, et al. How to improve therapy in myocarditis: role of cardiovascular magnetic resonance and of endomyocardial biopsy. Eur Heart J Suppl : journal of the European Society of Cardiology. 2019;21(Suppl B):B19–22.

    Google Scholar 

  171. Kim JS, et al. Cardiac sarcoidosis. Am Heart J. 2009;157(1):9–21.

    CAS  PubMed  Google Scholar 

  172. Kandolin R, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation. 2015;131(7):624–32.

    PubMed  Google Scholar 

  173. Uemura A, et al. Histologic diagnostic rate of cardiac sarcoidosis: evaluation of endomyocardial biopsies. Am Heart J. 1999;138(2 Pt 1):299–302.

    CAS  PubMed  Google Scholar 

  174. Maleszewski JJ. Cardiac amyloidosis: pathology, nomenclature, and typing. Cardiovasc Pathol. 2015;24(6):343–50.

    CAS  PubMed  Google Scholar 

  175. Bisel HF, Wroblewski F, Ladue JS. Incidence and clinical manifestations of cardiac metastases. J Am Med Assoc. 1953;153(8):712–5.

    CAS  PubMed  Google Scholar 

  176. Hoffmeier A, et al. Cardiac tumors--diagnosis and surgical treatment. Deutsches Arzteblatt Int. 2014;111(12):205–11.

    Google Scholar 

  177. Leja MJ, Shah DJ, Reardon MJ. Primary cardiac tumors. Tex Heart Inst J. 2011;38(3):261–2.

    PubMed  PubMed Central  Google Scholar 

  178. Palaskas N, et al. Evaluation and management of cardiac tumors. Curr Treat Options Cardiovasc Med. 2018;20(4):29.

    PubMed  Google Scholar 

  179. Donisan T, et al. In search of a less invasive approach to cardiac tumor diagnosis: multimodality imaging assessment and biopsy. JACC Cardiovasc Imaging. 2018;11(8):1191–5.

    PubMed  Google Scholar 

  180. Gilkeson RC, Chiles C. MR evaluation of cardiac and pericardial malignancy. Magn Reson Imaging Clin N Am. 2003;11(1):173–86 viii.

    PubMed  Google Scholar 

  181. Hoey ET, et al. MRI and CT appearances of cardiac tumours in adults. Clin Radiol. 2009;64(12):1214–30.

    CAS  PubMed  Google Scholar 

  182. Chan KL, et al. Diagnosis of left atrial sarcoma by transvenous endocardial biopsy. Can J Cardiol. 2001;17(2):206–8.

    CAS  PubMed  Google Scholar 

  183. Ghosh AK, et al. Pericardial disease in cancer patients. Curr Treat Options Cardiovasc Med. 2018;20(7):60.

    PubMed  PubMed Central  Google Scholar 

  184. Imazio M, et al. Good prognosis for pericarditis with and without myocardial involvement: results from a multicenter, prospective cohort study. Circulation. 2013;128(1):42–9.

    CAS  PubMed  Google Scholar 

  185. Sogaard KK, et al. Pericarditis as a marker of occult cancer and a prognostic factor for cancer mortality. Circulation. 2017;136(11):996–1006.

    PubMed  PubMed Central  Google Scholar 

  186. Kyto V, Sipila J, Rautava P. Clinical profile and influences on outcomes in patients hospitalized for acute pericarditis. Circulation. 2014;130(18):1601–6.

    PubMed  Google Scholar 

  187. Pawlak Cieslik A, et al. Diagnosis of malignant pericarditis: a single centre experience. Kardiol Pol. 2012;70(11):1147–53.

    PubMed  Google Scholar 

  188. Kim SH, et al. Clinical characteristics of malignant pericardial effusion associated with recurrence and survival. Cancer Res Treat. 2010;42(4):210–6.

    PubMed  PubMed Central  Google Scholar 

  189. Imazio M, et al. Controversial issues in the management of pericardial diseases. Circulation. 2010;121(7):916–28.

    PubMed  Google Scholar 

  190. Ben-Horin S, et al. Large symptomatic pericardial effusion as the presentation of unrecognized cancer: a study in 173 consecutive patients undergoing pericardiocentesis. Medicine (Baltimore). 2006;85(1):49–53.

    Google Scholar 

  191. Gagliardi G, et al. Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S77–85.

    PubMed  Google Scholar 

  192. Wang K, et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol. 2017;35(13):1387–94.

    PubMed  PubMed Central  Google Scholar 

  193. Bristow MR, et al. Early anthracycline cardiotoxicity. Am J Med. 1978;65(5):823–32.

    CAS  PubMed  Google Scholar 

  194. van Rijssel RH, et al. A case of ATRA-induced isolated myocarditis in the absence of circulating malignant cells: demonstration of the t(15;17) translocation in the inflammatory infiltrate by in situ hybridisation. Leuk Res. 2010;34(7):e142–4.

    PubMed  Google Scholar 

  195. Cham WC, et al. Radiation therapy of cardiac and pericardial metastases. Radiology. 1975;114(3):701–4.

    CAS  PubMed  Google Scholar 

  196. Posner MR, Cohen GI, Skarin AT. Pericardial disease in patients with cancer. The differentiation of malignant from idiopathic and radiation-induced pericarditis. Am J Med. 1981;71(3):407–13.

    CAS  PubMed  Google Scholar 

  197. Buck M, et al. Pericardial effusion in women with breast cancer. Cancer. 1987;60(2):263–9.

    CAS  PubMed  Google Scholar 

  198. Restrepo CS, et al. Primary pericardial tumors. Radiographics. 2013;33(6):1613–30.

    PubMed  Google Scholar 

  199. Tsang TS, et al. Echocardiographically guided pericardiocentesis: evolution and state-of-the-art technique. Mayo Clin Proc. 1998;73(7):647–52.

    CAS  PubMed  Google Scholar 

  200. Maisch B, et al. Percutaneous therapy in pericardial diseases. Cardiol Clin. 2017;35(4):567–88.

    PubMed  Google Scholar 

  201. Lekhakul A, et al. Safety and outcome of percutaneous drainage of pericardial effusions in patients with cancer. Am J Cardiol. 2018;122(6):1091–4.

    PubMed  Google Scholar 

  202. Vilela EM, et al. Computed tomography-guided pericardiocentesis: a systematic review concerning contemporary evidence and future perspectives. Ther Adv Cardiovasc Dis. 2018;12(11):299–307.

    PubMed  PubMed Central  Google Scholar 

  203. Vaitkus PT, Herrmann HC, LeWinter MM. Treatment of malignant pericardial effusion. Jama. 1994;272(1):59–64.

    CAS  PubMed  Google Scholar 

  204. El Haddad D, et al. Outcomes of cancer patients undergoing percutaneous pericardiocentesis for pericardial effusion. J Am Coll Cardiol. 2015;66(10):1119–28.

    PubMed  PubMed Central  Google Scholar 

  205. Maisch B, et al. Neoplastic pericardial effusion. Efficacy and safety of intrapericardial treatment with cisplatin. Eur Heart J. 2002;23(20):1625–31.

    CAS  PubMed  Google Scholar 

  206. Iliescu C, et al. Echocardiography and fluoroscopy-guided pericardiocentesis for cancer patients with cardiac tamponade and thrombocytopenia. J Am Coll Cardiol. 2016;68(7):771–3.

    PubMed  Google Scholar 

  207. Al-Hawwas M, et al. Acute coronary syndrome management in cancer patients. Curr Oncol Rep. 2018;20(10):78.

    PubMed  Google Scholar 

  208. Rafique AM, et al. Frequency of recurrence of pericardial tamponade in patients with extended versus nonextended pericardial catheter drainage. Am J Cardiol. 2011;108(12):1820–5.

    PubMed  Google Scholar 

  209. Adler Y, et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: the task force for the diagnosis and management of pericardial diseases of the European Society of Cardiology (ESC) endorsed by: the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921–64.

    PubMed  Google Scholar 

  210. Bhardwaj R, et al. Evaluation of safety and feasibility of percutaneous balloon pericardiotomy in hemodynamically significant pericardial effusion (review of 10-years experience in single center). J Interv Cardiol. 2015;28(5):409–14.

    PubMed  Google Scholar 

  211. Swanson N, et al. Primary percutaneous balloon pericardiotomy for malignant pericardial effusion. Catheter Cardiovasc Interv. 2008;71(4):504–7.

    PubMed  Google Scholar 

  212. Ziskind AA, et al. Percutaneous balloon pericardiotomy for the treatment of cardiac tamponade and large pericardial effusions: description of technique and report of the first 50 cases. J Am Coll Cardiol. 1993;21(1):1–5.

    CAS  PubMed  Google Scholar 

  213. Kunitoh H, et al. A randomised trial of intrapericardial bleomycin for malignant pericardial effusion with lung cancer (JCOG9811). Br J Cancer. 2009;100(3):464–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Zamorano JL, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.

    PubMed  Google Scholar 

  215. Felker GM, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–84.

    CAS  PubMed  Google Scholar 

  216. Oliveira GH, et al. Characteristics and survival of patients with chemotherapy-induced cardiomyopathy undergoing heart transplantation. J Heart Lung Transplant. 2012;31(8):805–10.

    PubMed  Google Scholar 

  217. Bianco CM, Al-Kindi SG, Oliveira GH. Advanced heart failure therapies for cancer therapeutics-related cardiac dysfunction. Heart Fail Clin. 2017;13(2):327–36.

    PubMed  Google Scholar 

  218. Russo AM, et al. ACCF/HRS/AHA/ASE/HFSA/SCAI/SCCT/SCMR 2013 appropriate use criteria for implantable cardioverter-defibrillators and cardiac resynchronization therapy: a report of the American College of Cardiology Foundation appropriate use criteria task force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2013;61(12):1318–68.

    PubMed  Google Scholar 

  219. Rickard J, et al. Usefulness of cardiac resynchronization therapy in patients with adriamycin-induced cardiomyopathy. Am J Cardiol. 2010;105(4):522–6.

    CAS  PubMed  Google Scholar 

  220. Ajijola OA, et al. Usefulness of cardiac resynchronization therapy in the management of doxorubicin-induced cardiomyopathy. Am J Cardiol. 2008;101(9):1371–2.

    PubMed  Google Scholar 

  221. Fadol, A.P., E. Mouhayar, and C.C. Reyes-Gibby, The use of cardiac resynchronization therapy in cancer patients with heart failure. J Clin Exp Res Cardiol, 2017. 3(1).

  222. Kirklin JK, et al. Long-term mechanical circulatory support (destination therapy) on track to compete with heart transplantation? J Thorac Cardiovasc Surg. 2012;144(3):584–603.

    PubMed  PubMed Central  Google Scholar 

  223. Slaughter MS, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    CAS  PubMed  Google Scholar 

  224. Deo SV, Al-Kindi SG, Oliveira GH. Management of advanced heart failure due to cancer therapy: the present role of mechanical circulatory support and cardiac transplantation. Curr Treat Options Cardiovasc Med. 2015;17(6):388.

    PubMed  Google Scholar 

  225. Abraham WT, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66.

    PubMed  Google Scholar 

  226. Adamson PB, et al. Pulmonary artery pressure-guided heart failure management reduces 30-day readmissions. Circ Heart Fail. 2016;9(6):e002600.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cezar A. Iliescu MD.

Ethics declarations

Conflict of Interest

Bala Pushparaji declares that there is no conflict of interest. Konstantinos Marmagkiolis declares that there is no conflict of interest. Cameron Miller declares that there is no conflict of interest. Moez K. Aziz declares that there is no conflict of interest. Dinu V. Balanescu declares that there is no conflict of interest. Teodora Donisan declares that there is no conflict of interest. Nicolas Palaskas declares that there is no conflict of interest. Peter Kim declares that there is no conflict of interest. Juan Lopez-Mattei declares that there is no conflict of interest. Mehmet Cilingiroglu declares that there is no conflict of interest. Saamir A. Hassan declares that there is no conflict of interest. Cezar A. Iliescu declares that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Coronary Artery Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushparaji, B., Marmagkiolis, K., Miller, C.K. et al. State-of-the-art Review: Interventional Onco-Cardiology. Curr Treat Options Cardio Med 22, 11 (2020). https://doi.org/10.1007/s11936-020-00809-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00809-x

Keywords

Navigation