Skip to main content

Advertisement

Log in

Cardiovascular Complications of Targeted Therapies for Chronic Myeloid Leukemia

  • Cardio-oncology (M Fradley, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

The development of tyrosine kinase inhibitors (TKIs) dramatically changed the treatment landscape for many different cancers including chronic myeloid leukemia (CML). With the introduction of imatinib, the first TKI developed and approved to effectively treat CML, patient survival has increased dramatically and, in some cases, this fatal cancer can be managed as a chronic disease. Since the approval of imatinib in 2002, four additional TKIs have been developed to treat this disease including the second-generation TKIs nilotinib, dasatinib, and bosutinib and the third-generation TKI ponatinib. Despite their significant impact on the progression of CML, there is increasing recognition of cardiovascular toxicities which can limit their long-term use and impact patient morbidity and mortality. The majority of the cardiotoxicities are associated with the second- and third-generation TKIs, the most concerning of which are vascular events including myocardial infarction, stroke and peripheral arterial disease. In addition, QT prolongation, pleural effusions, and both systemic and pulmonary hypertension are also observed. It is essential for both cardiologists and oncologists to possess knowledge of these issues in order to develop appropriate monitoring and risk mitigation strategies to prevent these toxicities and avoid premature cessation of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87. doi:10.1056/NEJMra044389.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017. doi:10.3322/caac.21387.

    Google Scholar 

  3. Nowell PC. Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest. 2007;117(8):2033–5. doi:10.1172/JCI31771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004. doi:10.1056/NEJMoa022457.

    Article  PubMed  Google Scholar 

  5. Huang X, Cortes J, Kantarjian H. Estimations of the increasing prevalence and plateau prevalence of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Cancer. 2012;118(12):3123–7. doi:10.1002/cncr.26679.

    Article  PubMed  PubMed Central  Google Scholar 

  6. •• Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;33(35):4210–8. doi:10.1200/JCO.2015.62.4718. Seminal article discussing pathophysiology of TKI-induced cardiotoxicity in chronic myeloid leukemia, along with providing comprehensive monitoring and treatment recommendations.

  7. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17. doi:10.1056/NEJMoa062867.

    Article  CAS  PubMed  Google Scholar 

  8. Kerkela R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12(8):908–16. doi:10.1038/nm1446.

    Article  PubMed  Google Scholar 

  9. Atallah E, Durand JB, Kantarjian H, Cortes J. Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood. 2007;110(4):1233–7. doi:10.1182/blood-2007-01-070144.

    Article  CAS  PubMed  Google Scholar 

  10. Wolf A, Couttet P, Dong M, Grenet O, Heron M, Junker U, et al. Imatinib does not induce cardiotoxicity at clinically relevant concentrations in preclinical studies. Leuk Res. 2010;34(9):1180–8. doi:10.1016/j.leukres.2010.01.004.

    Article  CAS  PubMed  Google Scholar 

  11. Uitdehaag JC, de Roos JA, van Doornmalen AM, Prinsen MB, de Man J, Tanizawa Y, et al. Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS One. 2014;9(3):e92146. doi:10.1371/journal.pone.0092146.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Louvet C, Szot GL, Lang J, Lee MR, Martinier N, Bollag G, et al. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2008;105(48):18895–900. doi:10.1073/pnas.0810246105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lassila M, Allen TJ, Cao Z, Thallas V, Jandeleit-Dahm KA, Candido R, et al. Imatinib attenuates diabetes-associated atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(5):935–42. doi:10.1161/01.ATV.0000124105.39900.db.

    Article  CAS  PubMed  Google Scholar 

  14. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115(10):2811–21. doi:10.1172/JCI24838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mariani S, Tornaghi L, Sassone M, Basciani S, Buzzetti R, Gambacorti-Passerini C, et al. Imatinib does not substantially modify the glycemic profile in patients with chronic myeloid leukaemia. Leuk Res. 2010;34(1):e5–7. doi:10.1016/j.leukres.2009.08.003.

    Article  CAS  PubMed  Google Scholar 

  16. Breccia M, Muscaritoli M, Aversa Z, Mandelli F, Alimena G. Imatinib mesylate may improve fasting blood glucose in diabetic Ph + chronic myelogenous leukemia patients responsive to treatment. J Clin Oncol. 2004;22(22):4653–5. doi:10.1200/JCO.2004.04.217.

    Article  CAS  PubMed  Google Scholar 

  17. Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–9. doi:10.1056/NEJMoa0912614.

    Article  CAS  PubMed  Google Scholar 

  18. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354(24):2542–51. doi:10.1056/NEJMoa055104.

    Article  PubMed  Google Scholar 

  19. Aichberger KJ, Herndlhofer S, Schernthaner GH, Schillinger M, Mitterbauer-Hohendanner G, Sillaber C, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol. 2011;86(7):533–9. doi:10.1002/ajh.22037.

    Article  CAS  PubMed  Google Scholar 

  20. Le Coutre P, Rea D, Abruzzese E, Dombret H, Trawinska MM, Herndlhofer S, et al. Severe peripheral arterial disease during nilotinib therapy. J Natl Cancer Inst. 2011;103(17):1347–8. doi:10.1093/jnci/djr292.

    Article  PubMed  Google Scholar 

  21. Giles FJ, Mauro MJ, Hong F, Ortmann CE, McNeill C, Woodman RC, et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia. 2013;27(6):1310–5. doi:10.1038/leu.2013.69.

    Article  CAS  PubMed  Google Scholar 

  22. Quintas-Cardama A, Kantarjian H, Cortes J. Nilotinib-associated vascular events. Clin Lymphoma Myeloma Leuk. 2012;12(5):337–40. doi:10.1016/j.clml.2012.04.005.

    Article  CAS  PubMed  Google Scholar 

  23. Larson RA, Hochhaus A, Hughes TP, Clark RE, Etienne G, Kim DW, et al. Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia. 2012;26(10):2197–203. doi:10.1038/leu.2012.134.

    Article  CAS  PubMed  Google Scholar 

  24. Valent P, Hadzijusufovic E, Schernthaner GH, Wolf D, Rea D, le Coutre P. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125(6):901–6. doi:10.1182/blood-2014-09-594432.

    Article  CAS  PubMed  Google Scholar 

  25. • Larson RA, Kim D-W, Issaragrisil S, Le Coutre P, Etienne G. Efficacy and safety of nilotinib (NIL) vs imatinib (IM) in patients (pts) with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP): long term follow up (f/u) of ENESTnd. Blood. 2014;124:4541. Report quantifying the vascular events associated with long-term (6-year) nilotinib use.

  26. Gugliotta G, Castagnetti F, Breccia M, Levato L, D’Adda M, Stagno F, et al. Long-term outcome of a phase 2 trial with nilotinib 400 mg twice daily in first-line treatment of chronic myeloid leukemia. Haematologica. 2015;100(9):1146–50. doi:10.3324/haematol.2015.129221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. •• Douxfils J, Haguet H, Mullier F, Chatelain C, Graux C, Dogne JM. Association between BCR-ABL tyrosine kinase inhibitors for chronic myeloid leukemia and cardiovascular events, major molecular response, and overall survival: a systematic review and meta -analysis. JAMA Oncol. 2016. doi:10.1001/jamaoncol.2015.5932. Recently published meta-analysis of the major studies quantifying cardiovascular events associated with all TKIs used to treat chronic myeloid leukemia.

  28. Rea D, Mirault T, Cluzeau T, Gautier JF, Guilhot F, Dombret H, et al. Early onset hypercholesterolemia induced by the 2nd-generation tyrosine kinase inhibitor nilotinib in patients with chronic phase-chronic myeloid leukemia. Haematologica. 2014;99(7):1197–203. doi:10.3324/haematol.2014.104075.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Alhawiti N, Burbury KL, Kwa FA, O’Malley CJ, Shuttleworth P, Alzard M, et al. The tyrosine kinase inhibitor, nilotinib potentiates a prothrombotic state. Thromb Res. 2016;145:54–64. doi:10.1016/j.thromres.2016.07.019.

    Article  CAS  PubMed  Google Scholar 

  30. Lu Z, Wu CY, Jiang YP, Ballou LM, Clausen C, Cohen IS, et al. Suppression of phosphoinositide 3-kinase signaling and alteration of multiple ion currents in drug-induced long QT syndrome. Sci Transl Med. 2012;4(131):131ra50. doi:10.1126/scitranslmed.3003623.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang T, Chun YW, Stroud DM, Mosley JD, Knollmann BC, Hong C, et al. Screening for acute IKr block is insufficient to detect torsades de pointes liability: role of late sodium current. Circulation. 2014;130(3):224–34. doi:10.1161/CIRCULATIONAHA.113.007765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Locatelli M, Criscitiello C, Esposito A, Minchella I, Goldhirsch A, Cipolla C, et al. QTc prolongation induced by targeted biotherapies used in clinical practice and under investigation: a comprehensive review. Target Oncol. 2015;10(1):27–43. doi:10.1007/s11523-014-0325-x.

    Article  PubMed  Google Scholar 

  33. Tam CS, Kantarjian H, Garcia-Manero G, Borthakur G, O’Brien S, Ravandi F, et al. Failure to achieve a major cytogenetic response by 12 months defines inadequate response in patients receiving nilotinib or dasatinib as second or subsequent line therapy for chronic myeloid leukemia. Blood. 2008;112(3):516–8. doi:10.1182/blood-2008-02-141580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fradley MG, Moslehi J. QT prolongation and oncology drug development. Card Electrophysiol Clin. 2015;7(2):341–55. doi:10.1016/j.ccep.2015.03.013.

    Article  PubMed  Google Scholar 

  35. Tasigna [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2015.

  36. Pinilla-Ibarz J, Sweet K, Emole J, Fradley M. Long-term BCR-ABL1 tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Anticancer Res. 2015;35(12):6355–64.

    CAS  PubMed  Google Scholar 

  37. Yu EY, Wilding G, Posadas E, Gross M, Culine S, Massard C, et al. Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 2009;15(23):7421–8. doi:10.1158/1078-0432.CCR-09-1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blake S, Hughes TP, Mayrhofer G, Lyons AB. The Src/ABL kinase inhibitor dasatinib (BMS-354825) inhibits function of normal human T-lymphocytes in vitro. Clin Immunol. 2008;127(3):330–9. doi:10.1016/j.clim.2008.02.006.

    Article  CAS  PubMed  Google Scholar 

  39. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–41. doi:10.1056/NEJMoa055229.

    Article  CAS  PubMed  Google Scholar 

  40. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362(24):2260–70. doi:10.1056/NEJMoa1002315.

    Article  CAS  PubMed  Google Scholar 

  41. • Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boque C, et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol. 2016;34(20):2333–40. doi:10.1200/JCO.2015.64.8899. Study quantifying the cardiovascular and pulmonary events associated with long-term dasatinib use.

  42. Latagliata R, Breccia M, Fava C, Stagno F, Tiribelli M, Luciano L, et al. Incidence, risk factors and management of pleural effusions during dasatinib treatment in unselected elderly patients with chronic myelogenous leukaemia. Hematol Oncol. 2013;31(2):103–9. doi:10.1002/hon.2020.

    Article  PubMed  Google Scholar 

  43. Mattei D, Feola M, Orzan F, Mordini N, Rapezzi D, Gallamini A. Reversible dasatinib-induced pulmonary arterial hypertension and right ventricle failure in a previously allografted CML patient. Bone Marrow Transplant. 2009;43(12):967–8. doi:10.1038/bmt.2008.415.

    Article  CAS  PubMed  Google Scholar 

  44. Montani D, Bergot E, Gunther S, Savale L, Bergeron A, Bourdin A, et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation. 2012;125(17):2128–37. doi:10.1161/CIRCULATIONAHA.111.079921.

    Article  CAS  PubMed  Google Scholar 

  45. Sprycel [package insert]. Princeton, NJ: Bristol-Myers Squibb; 2014.

  46. Zhang DY, Wang Y, Lau CP, Tse HF, Li GR. Both EGFR kinase and Src-related tyrosine kinases regulate human ether-a-go-go-related gene potassium channels. Cell Signal. 2008;20(10):1815–21. doi:10.1016/j.cellsig.2008.06.006.

    Article  CAS  PubMed  Google Scholar 

  47. Puttini M, Coluccia AM, Boschelli F, Cleris L, Marchesi E, Donella-Deana A, et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res. 2006;66(23):11314–22. doi:10.1158/0008-5472.CAN-06-1199.

    Article  CAS  PubMed  Google Scholar 

  48. Cortes JE, Kim DW, Kantarjian HM, Brummendorf TH, Dyagil I, Griskevicius L, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol. 2012;30(28):3486–92. doi:10.1200/JCO.2011.38.7522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brummendorf TH, Cortes JE, de Souza CA, Guilhot F, Duvillie L, Pavlov D, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol. 2015;168(1):69–81. doi:10.1111/bjh.13108.

    Article  PubMed  Google Scholar 

  50. Kantarjian HM, Cortes JE, Kim DW, Khoury HJ, Brummendorf TH, Porkka K, et al. Bosutinib safety and management of toxicity in leukemia patients with resistance or intolerance to imatinib and other tyrosine kinase inhibitors. Blood. 2014;123(9):1309–18. doi:10.1182/blood-2013-07-513937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iclusig [package insert]. Cambridge, MA: ARIAD Pharmaceuticals; 2014.

  52. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96. doi:10.1056/NEJMoa1306494.

    Article  CAS  PubMed  Google Scholar 

  53. Cortes JE, Kim D-W, Pinilla-Ibarz J, Le Coutre P, Paquette R, Chuah C. Long-term follow-up of ponatinib efficacy and safety in the phase 2 PACE trial. Blood. 2014;124:3135. Report quantifying the cardiovascular events associated with extended ponatinib use.

    Google Scholar 

  54. Groarke JD, Cheng S, Moslehi J. Cancer-drug discovery and cardiovascular surveillance. N Engl J Med. 2013;369(19):1779–81. doi:10.1056/NEJMp1313140.

    Article  CAS  PubMed  Google Scholar 

  55. Loren CP, Aslan JE, Rigg RA, Nowak MS, Healy LD, Gruber A, et al. The BCR-ABL inhibitor ponatinib inhibits platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling, platelet activation and aggregate formation under shear. Thromb Res. 2015;135(1):155–60. doi:10.1016/j.thromres.2014.11.009.

    Article  CAS  PubMed  Google Scholar 

  56. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76. doi:10.1038/nm0603-669.

    Article  CAS  PubMed  Google Scholar 

  57. Nazer B, Humphreys BD, Moslehi J. Effects of novel angiogenesis inhibitors for the treatment of cancer on the cardiovascular system: focus on hypertension. Circulation. 2011;124(15):1687–91. doi:10.1161/CIRCULATIONAHA.110.992230.

    Article  PubMed  Google Scholar 

  58. Brinda BJ, Viganego F, Vo T, Dolan D, Fradley MG. Anti-VEGF-induced hypertension: a review of pathophysiology and treatment options. Curr Treat Options Cardiovasc Med. 2016;18(5):33. doi:10.1007/s11936-016-0452-z.

    Article  PubMed  Google Scholar 

  59. Facemire CS, Nixon AB, Griffiths R, Hurwitz H, Coffman TM. Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension. 2009;54(3):652–8. doi:10.1161/HYPERTENSIONAHA.109.129973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maitland ML, Bakris GL, Black HR, Chen HX, Durand JB, Elliott WJ, et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst. 2010;102(9):596–604. doi:10.1093/jnci/djq091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20. doi:10.1001/jama.2013.284427.

    Article  CAS  PubMed  Google Scholar 

  62. Steingart RM, Bakris GL, Chen HX, Chen MH, Force T, Ivy SP, et al. Management of cardiac toxicity in patients receiving vascular endothelial growth factor signaling pathway inhibitors. Am Heart J. 2012;163(2):156–63. doi:10.1016/j.ahj.2011.10.018.

    Article  CAS  PubMed  Google Scholar 

  63. de Jesus-Gonzalez N, Robinson E, Moslehi J, Humphreys BD. Management of antiangiogenic therapy-induced hypertension. Hypertension. 2012;60(3):607–15. doi:10.1161/HYPERTENSIONAHA.112.196774.

    Article  PubMed  PubMed Central  Google Scholar 

  64. McKay RR, Rodriguez GE, Lin X, Kaymakcalan MD, Hamnvik OP, Sabbisetti VS, et al. Angiotensin system inhibitors and survival outcomes in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2015;21(11):2471–9. doi:10.1158/1078-0432.CCR-14-2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kappers MH, van Esch JH, Sluiter W, Sleijfer S, Danser AH, van den Meiracker AH. Hypertension induced by the tyrosine kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. Hypertension. 2010;56(4):675–81. doi:10.1161/HYPERTENSIONAHA.109.149690.

    Article  CAS  PubMed  Google Scholar 

  66. Curwen JO, Musgrove HL, Kendrew J, Richmond GH, Ogilvie DJ, Wedge SR. Inhibition of vascular endothelial growth factor-a signaling induces hypertension: examining the effect of cediranib (recentin; AZD2171) treatment on blood pressure in rat and the use of concomitant antihypertensive therapy. Clin Cancer Res. 2008;14(10):3124–31. doi:10.1158/1078-0432.CCR-07-4783.

    Article  CAS  PubMed  Google Scholar 

  67. Lankhorst S, Kappers MH, van Esch JH, Smedts FM, Sleijfer S, Mathijssen RH, et al. Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study. Hypertension. 2014;64(6):1282–9. doi:10.1161/HYPERTENSIONAHA.114.04187.

    Article  CAS  PubMed  Google Scholar 

  68. Mir O, Coriat R, Ropert S, Cabanes L, Blanchet B, Camps S, et al. Treatment of bevacizumab-induced hypertension by amlodipine. Invest New Drugs. 2012;30(2):702–7. doi:10.1007/s10637-010-9549-5.

    Article  CAS  PubMed  Google Scholar 

  69. Miura S, Fujino M, Matsuo Y, Tanigawa H, Saku K. Nifedipine-induced vascular endothelial growth factor secretion from coronary smooth muscle cells promotes endothelial tube formation via the kinase insert domain-containing receptor/fetal liver kinase-1/NO pathway. Hypertens Res. 2005;28(2):147–53. doi:10.1291/hypres.28.147.

    Article  CAS  PubMed  Google Scholar 

  70. Goff Jr DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S49–73. doi:10.1161/01.cir.0000437741.48606.98.

    Article  PubMed  Google Scholar 

  71. • Kim TD, Rea D, Schwarz M, Grille P, Nicolini FE, Rosti G, et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia. 2013;27(6):1316–21. doi:10.1038/leu.2013.70. Study demonstrating the utility of screening patients treated with nilotinib with an ankle-brachial index to identify those at highest risk for subsequent vascular toxicities.

  72. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation. 2009;119(16):2250–94. doi:10.1161/CIRCULATIONAHA.109.192230.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Fradley MD.

Ethics declarations

Conflict of Interest

Rongras Damrongwatanasuk declares no potential conflict of interest.

Michael G. Fradley: Advisory Board—ARIAD Pharmaceuticals; Section Editor for Current Treatment Options in Cardiovascular Medicine.

Additional information

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damrongwatanasuk, R., Fradley, M.G. Cardiovascular Complications of Targeted Therapies for Chronic Myeloid Leukemia. Curr Treat Options Cardio Med 19, 24 (2017). https://doi.org/10.1007/s11936-017-0524-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0524-8

Keywords

Navigation