Skip to main content

Advertisement

Log in

Atrial Fibrillation and Heart Failure: Cause or Effect?

  • Epidemiology of Heart Failure (CSP Lam, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) and heart failure (HF) are two epidemics of the century that have a close and complex relationship. The mechanisms underlying this association remain an area of ongoing intense research. In this review, we will describe the relationship between these two public health concerns, the mechanisms that fuel the development and perpetuation of both, and the evolving concepts that may revolutionize our approach to this dual epidemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Braunwald E. Shattuck lecture—cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med. 1997;337:1360–9.

    Article  PubMed  CAS  Google Scholar 

  2. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation (ATRIA) study. JAMA: J Am Med Assoc. 2001;285:2370–5. This is one of the only two studies that projected the prevalence of AF in US by 2050.

    Article  CAS  Google Scholar 

  3. Miyasaka Y, Barnes ME, Gersh BJ, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114:119–25. This is one of the only two studies that projected the prevalence of AF in US by 2050.

    Article  PubMed  Google Scholar 

  4. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–292.

    Article  PubMed  Google Scholar 

  5. Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 2005;112:e154–235.

    Article  PubMed  Google Scholar 

  6. Hunt SA, Abraham WT, Chin MH, et al. Focused update incorporated into the ACC/AHA 2005 Guidelines for the diagnosis and management of heart failure in adults a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. [Erratum appears in J Am Coll Cardiol. 2009 Dec 15;54(25):2464]. J Am Coll Cardiol. 2009;53:e1–90.

    Article  PubMed  Google Scholar 

  7. Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 Study. Circulation. 2014;129:837–47.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hernandez MB, Asher CR, Hernandez AV, Novaro GM. African American race and prevalence of atrial fibrillation: a meta-analysis. Cardiol Res Pract. 2012;2012:275624.

    PubMed Central  PubMed  Google Scholar 

  9. Marcus GM, Alonso A, Peralta CA, et al. European ancestry as a risk factor for atrial fibrillation in African Americans. Circulation. 2010;122:2009–15.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Lubitz SA, Lunetta KL, Lin H, et al. Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese. J Am Coll Cardiol. 2012;63:1200–10.

    Article  CAS  Google Scholar 

  11. Ellinor PT, Lunetta KL, Albert CM, et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet. 2012;44:670–5. This is a meta-analysis that highlights the potential genetic contribution to AF development.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Schnabel RB, Kerr KF, Lubitz SA, et al. Large-scale candidate gene analysis in whites and African Americans identifies IL6R polymorphism in relation to atrial fibrillation: the national heart, lung, and blood institute’s candidate gene association resource (CARe) project. Circ Cardiovasc Genet. 2011;4:557–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Sinner MF, Ellinor PT, Meitinger T, Benjamin EJ, Kaab S. Genome-wide association studies of atrial fibrillation: past, present, and future. Cardiovasc Res. 2011;89:701–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Lubitz SA, Yin X, Fontes JD, et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA. 2010;304:2263–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Wang TJ, Larson MG, Levy D, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation. 2003;107:2920–5.

    Article  PubMed  Google Scholar 

  16. Kirchhof P, Lip GYH, Van Gelder IC, et al. Comprehensive risk reduction in patients with atrial fibrillation: emerging diagnostic and therapeutic options—a report from the 3rd Atrial Fibrillation Competence NETwork/European Heart Rhythm Association consensus conference. Europace. 2012;14:8–27.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Dunlay SM, Weston SA, Jacobsen SJ, Roger VL. Risk factors for heart failure: a population-based case–control study. Am J Med. 2009;122:1023–8.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mitchell JE, Tam SW, Trivedi K, et al. Atrial fibrillation and mortality in African American patients with heart failure: results from the African American heart failure trial (A-HeFT). Am Heart J. 2011;162:154–9.

    Article  PubMed  Google Scholar 

  19. Mamas MA, Caldwell JC, Chacko S, Garratt CJ, Fath-Ordoubadi F, Neyses L. A meta-analysis of the prognostic significance of atrial fibrillation in chronic heart failure. Eur J Heart Fail. 2009;11:676–83.

    Article  PubMed  Google Scholar 

  20. McManus D, Hsu G, Sung S et al. Atrial Fibrillation and Outcomes in Heart Failure With Preserved Versus Reduced Left Ventricular Ejection Fraction. Journal of the American Heart Association 2013;2:doi 10.1161/JAHA.112.005694.

  21. Zakeri R, Chamberlain AM, Roger VL, Redfield MM. Temporal relationship and prognostic significance of atrial fibrillation in heart failure patients with preserved ejection fraction: a community-based study. Circulation. 2013;128:1085–93.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lam CSP, Carson PE, Anand IS, et al. Sex differences in clinical characteristics and outcomes in elderly patients with heart failure and preserved ejection fraction: the Irbesartan in heart failure with preserved ejection fraction (I-PRESERVE) trial. Circ Heart Fail. 2012;5:571–8.

    Article  PubMed  CAS  Google Scholar 

  23. Miyasaka Y, Barnes ME, Bailey KR, et al. Mortality trends in patients diagnosed with first atrial fibrillation: a 21-year community-based study. J Am Coll Cardiol. 2007;49:986–92. This is the only study that had ever demonstrated the lack of improvement in survival over 2 decades for AF patients.

    Article  PubMed  Google Scholar 

  24. Marijon E, Le Heuzey J-Y, Connolly S, et al. Causes of death and influencing factors in patients with atrial fibrillation: a competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation. 2013;128:2192–201.

    Article  PubMed  CAS  Google Scholar 

  25. Spinale FG, Hendrick DA, Crawford FA, Smith AC, Hamada Y, Carabello BA. Chronic supraventricular tachycardia causes ventricular dysfunction and subendocardial injury in swine. Am J Physiol. 1990;259:H218–29.

    PubMed  CAS  Google Scholar 

  26. Spinale FG, Holzgrefe HH, Mukherjee R, et al. LV and myocyte structure and function after early recovery from tachycardia-induced cardiomyopathy. Am J Physiol. 1995;268:H836–47.

    PubMed  CAS  Google Scholar 

  27. Tibayan FA, Lai DTM, Timek TA, et al. Alterations in left ventricular torsion in tachycardia-induced dilated cardiomyopathy. J Thorac Cardiovasc Surg. 2002;124:43–9.

    Article  PubMed  Google Scholar 

  28. Byrne MJ, Raman JS, Alferness CA, Esler MD, Kaye DM, Power JM. An ovine model of tachycardia-induced degenerative dilated cardiomyopathy and heart failure with prolonged onset. J Card Fail. 2002;8:108–15.

    Article  PubMed  Google Scholar 

  29. Eble DM, Spinale FG. Contractile and cytoskeletal content, structure, and mRNA levels with tachycardia-induced cardiomyopathy. Am J Physiol. 1995;268:H2426–39.

    PubMed  CAS  Google Scholar 

  30. Packer DL, Bardy GH, Worley SJ, et al. Tachycardia-induced cardiomyopathy: a reversible form of left ventricular dysfunction. Am J Cardiol. 1986;57:563–70.

    Article  PubMed  CAS  Google Scholar 

  31. Grogan M, Smith HC, Gersh BJ, Wood DL. Left ventricular dysfunction due to atrial fibrillation in patients initially believed to have idiopathic dilated cardiomyopathy. Am J Cardiol. 1992;69:1570–3.

    Article  PubMed  CAS  Google Scholar 

  32. Han FT, Kiser R, Nixon JV, Wood MA, Ellenbogen KA. What is the time course of reversal of tachycardia-induced cardiomyopathy? Europace. 2011;13:139–41.

    Article  PubMed  Google Scholar 

  33. Gentlesk PJ, Sauer WH, Gerstenfeld EP, et al. Reversal of left ventricular dysfunction following ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18:9–14.

    Article  PubMed  Google Scholar 

  34. Khan MN, Jais P, Cummings J, et al. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. N Engl J Med. 2008;359:1778–85.

    Article  PubMed  CAS  Google Scholar 

  35. Hsu LF, Jais P, Sanders P, et al. Catheter ablation for atrial fibrillation in congestive heart failure. N Engl J Med. 2004;351:2373–83.

    Article  PubMed  CAS  Google Scholar 

  36. Chen MS, Marrouche NF, Khaykin Y, et al. Pulmonary vein isolation for the treatment of atrial fibrillation in patients with impaired systolic function. J Am Coll Cardiol. 2004;43:1004–9.

    Article  PubMed  Google Scholar 

  37. Tondo C, Mantica M, Russo G, et al. Pulmonary vein vestibule ablation for the control of atrial fibrillation in patients with impaired left ventricular function. Pacing Clin Electrophysiol. 2006;29:962–70.

    Article  PubMed  Google Scholar 

  38. Zhong J-q, Zhang W, Gao H, et al. Changes in connexin 43, metalloproteinase and tissue inhibitor of metalloproteinase during tachycardia-induced cardiomyopathy in dogs. Eur J Heart Fail. 2007;9:23–9.

    Article  PubMed  CAS  Google Scholar 

  39. Sairaku A, Nakano Y, Oda N et al. Incomplete cure of tachycardia-induced cardiomyopathy secondary to rapid atrial fibrillation by heart rate control without sinus conversion. Cardiovascular Electrophysiology 2014;2014 Apr 24. doi: 10.1111/jce.12445. [Epub ahead of print].

  40. Ellis ER, Josephson ME. Heart failure and tachycardia-induced cardiomyopathy. Curr Heart Fail Rep. 2013;10:296–306.

    Article  PubMed  Google Scholar 

  41. Pai RG, Varadarajan P, Tanimoto M. Effect of atrial fibrillation on the dynamics of mitral annular area. J Heart Valve Dis. 2003;12:31–7.

    PubMed  Google Scholar 

  42. Luong C, Tsang M, Gin K, et al. Natural history of tricuspid annulus and right atrial remodeling in permanent atrial fibrillation [abstract]. Circulation. 2013;128(22 Suppl):A19141.

    Google Scholar 

  43. Tsang M, Luong C, Jue J, et al. Remodeling of mitral annulus and left atrium in permanent atrial fibrillation: relationship to severity of mitral regurgitation [abstract]. Circulation. 2013;128(22 Suppl), A19185.

    Google Scholar 

  44. Shite J, Yokota Y, Yokoyama M. Heterogeneity and time course of improvement in cardiac function after cardioversion of chronic atrial fibrillation: assessment of serial echocardiographic indices. Br Heart J. 1993;70:154–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Raymond RJ, Lee AJ, Messineo FC, Manning WJ, Silverman DI. Cardiac performance early after cardioversion from atrial fibrillation. Am Heart J. 1998;136:435–42.

    Article  PubMed  CAS  Google Scholar 

  46. Cochet H, Scherr D, Zellerhoff S, et al. Atrial structure and function 5 years after successful ablation for persistent atrial fibrillation: an MRI study. J Cardiovasc Electrophysiol. 2014;25:671–9.

    Article  PubMed  Google Scholar 

  47. Gasparovic H, Cikes M, Kopjar T, et al. Atrial apoptosis and fibrosis adversely affect atrial conduit, reservoir and contractile functions. Interact Cardiovasc Thorac Surg. 2014;19:223–30. discussion 230.

    Article  PubMed  Google Scholar 

  48. Corradi D, Callegari S, Maestri R, Benussi S, Alfieri O. Structural remodeling in atrial fibrillation. Nat Clin Prac Cardiovasc Med. 2008;5:782–96.

    Article  Google Scholar 

  49. Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation. 1997;96:3157–63.

    Article  PubMed  CAS  Google Scholar 

  50. Ausma J, Litjens N, Lenders M, et al. Time course of atrial fibrillation-induced cellular structural remodeling in atria of the goat. J Mol Cell Cardiol. 2001;33:2083–94.

    Article  PubMed  CAS  Google Scholar 

  51. Corradi D, Callegari S, Benussi S, et al. Regional left atrial interstitial remodeling in patients with chronic atrial fibrillation undergoing mitral-valve surgery. Virchows Arch. 2004;445:498–505.

    Article  PubMed  Google Scholar 

  52. Burstein B, Qi XY, Yeh YH, Calderone A, Nattel S. Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: a novel consideration in atrial remodeling. Cardiovasc Res. 2007;76:442–52.

    Article  PubMed  CAS  Google Scholar 

  53. Ausma J, van der Velden HMW, Lenders M-H, et al. Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat. Circulation. 2003;107:2051–8.

    Article  PubMed  Google Scholar 

  54. Assayag P, Carre F, Chevalier B, Delcayre C, Mansier P, Swynghedauw B. Compensated cardiac hypertrophy: arrhythmogenicity and the new myocardial phenotype. I. Fibrosis. Cardiovasc Res. 1997;34:439–44.

    Article  PubMed  CAS  Google Scholar 

  55. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954–68.

    Article  PubMed  CAS  Google Scholar 

  56. Allessie MA. Atrial electrophysiologic remodeling: another vicious circle? J Cardiovasc Electrophysiol. 1998;9:1378–93.

    Article  PubMed  CAS  Google Scholar 

  57. Oakes RS, Badger TJ, Kholmovski EG, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009;119:1758–67.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Clark DM, Plumb VJ, Epstein AE, Kay GN. Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J Am Coll Cardiol. 1997;30:1039–45.

    Article  PubMed  CAS  Google Scholar 

  59. Daoud EG, Weiss R, Bahu M, et al. Effect of an irregular ventricular rhythm on cardiac output. Am J Cardiol. 1996;78:1433–6.

    Article  PubMed  CAS  Google Scholar 

  60. Naito M, David D, Michelson EL, Schaffenburg M, Dreifus LS. The hemodynamic consequences of cardiac arrhythmias: evaluation of the relative roles of abnormal atrioventricular sequencing, irregularity of ventricular rhythm and atrial fibrillation in a canine model. Am Heart J. 1983;106:284–91.

    Article  PubMed  CAS  Google Scholar 

  61. Ganesan AN, Brooks AG, Roberts-Thomson KC, Lau DH, Kalman JM, Sanders P. Role of AV nodal ablation in cardiac resynchronization in patients with coexistent atrial fibrillation and heart failure a systematic review. J Am Coll Cardiol. 2012;59:719–26.

    Article  PubMed  Google Scholar 

  62. Shantsila E, Shantsila A, Blann AD, Lip GYH. Left ventricular fibrosis in atrial fibrillation. Am J Cardiol. 2013;111:996–1001.

    Article  PubMed  Google Scholar 

  63. Ling L-H, Kistler PM, Ellims AH, et al. Diffuse ventricular fibrosis in atrial fibrillation: noninvasive evaluation and relationships with aging and systolic dysfunction. J Am Coll Cardiol. 2012;60:2402–8.

    Article  PubMed  Google Scholar 

  64. Neilan TG, Shah RV, Abbasi SA, et al. The incidence, pattern, and prognostic value of left ventricular myocardial scar by late gadolinium enhancement in patients with atrial fibrillation. J Am Coll Cardiol. 2013;62:2205–14.

    Article  PubMed  CAS  Google Scholar 

  65. Reinier K, Marijon E, Uy-Evanado A, et al. The association between atrial fibrillation and sudden cardiac death: the relevance of heart failure. JACC Heart Fail. 2014;2:221–7.

    Article  PubMed  Google Scholar 

  66. Wakili R, Voigt N, Kaab S, Dobrev D, Nattel S. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011;121:2955–68.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Bosch RF, Scherer CR, Rub N, et al. Molecular mechanisms of early electrical remodeling: transcriptional downregulation of ion channel subunits reduces I(Ca, L) and I(to) in rapid atrial pacing in rabbits. J Am Coll Cardiol. 2003;41:858–69.

    Article  PubMed  CAS  Google Scholar 

  68. Dobrev D, Friedrich A, Voigt N, et al. The G protein-gated potassium current I(K, ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation. 2005;112:3697–706.

    Article  PubMed  CAS  Google Scholar 

  69. Igarashi T, Finet JE, Takeuchi A, et al. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation. Circulation. 2012;125:216–25.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Voigt N, Li N, Wang Q, et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na + −Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation. 2012;125:2059–70.

    Article  PubMed  CAS  Google Scholar 

  71. Gronefeld GC, Hohnloser SH. Heart failure complicated by atrial fibrillation: mechanistic, prognostic, and therapeutic implications. J Cardiovasc Pharmacol Therapeut. 2003;8:107–13.

    Article  Google Scholar 

  72. Tsang TSM, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol. 2002;90:1284–9. In this study, left atrial volume was shown to be the barometer of LV diastolic dyfunction and a measure of the burden of cardiovascular risks.

    Article  PubMed  Google Scholar 

  73. Gottdiener JS, Kitzman DW, Aurigemma GP, Arnold AM, Manolio TA. Left atrial volume, geometry, and function in systolic and diastolic heart failure of persons > or =65 years of age (the cardiovascular health study). Am J Cardiol. 2006;97:83–9.

    Article  PubMed  Google Scholar 

  74. Löfsjögård J, Persson H, Díez J et al. Atrial fibrillation and biomarkers of myocardial fibrosis in heart failure. Scandinavian Cardiovascular Journal 2014 Aug 6:1–5. [Epub ahead of print] doi 10.3109/14017431.2014.940063.

  75. Knackstedt C, Gramley F, Schimpf T, et al. Association of echocardiographic atrial size and atrial fibrosis in a sequential model of congestive heart failure and atrial fibrillation. Cardiovasc Pathol. 2008;17:318–24.

    Article  PubMed  Google Scholar 

  76. Tanaka K, Zlochiver S, Vikstrom KL, et al. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ Res. 2007;101:839–47.

    Article  PubMed  CAS  Google Scholar 

  77. Spach MS, Heidlage JF, Dolber PC, Barr RC. Mechanism of origin of conduction disturbances in aging human atrial bundles: experimental and model study. Heart Rhythm. 2007;4:175–85.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Sanders P, Morton JB, Davidson NC, et al. Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation. 2003;108:1461–8.

    Article  PubMed  Google Scholar 

  79. Li D, Melnyk P, Feng J, et al. Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation. 2000;101:2631–8.

    Article  PubMed  CAS  Google Scholar 

  80. Cha TJ, Ehrlich JR, Zhang L, et al. Dissociation between ionic remodeling and ability to sustain atrial fibrillation during recovery from experimental congestive heart failure. Circulation. 2004;109:412–8.

    Article  PubMed  Google Scholar 

  81. Cha T-J, Ehrlich JR, Zhang L, Nattel S. Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure. Circulation. 2004;110:1520–6.

    Article  PubMed  Google Scholar 

  82. Gao M, Wang J, Wang Z, et al. An altered expression of genes involved in the regulation of ion channels in atrial myocytes is correlated with the risk of atrial fibrillation in patients with heart failure. Exp Therapeut Med. 2013;5:1239–343.

    CAS  Google Scholar 

  83. Yeh Y-H, Wakili R, Qi X-Y, et al. Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythmia Electrophysiol. 2008;1:93–102.

    Article  CAS  Google Scholar 

  84. Rucker-Martin C, Milliez P, Tan S, et al. Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts. Cardiovasc Res. 2006;72:69–79.

    Article  PubMed  CAS  Google Scholar 

  85. Rohr S. Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc Res. 2004;62:309–22.

    Article  PubMed  CAS  Google Scholar 

  86. Kato T, Iwasaki Y-K, Nattel S. Connexins and atrial fibrillation: filling in the gaps. Circulation. 2012;125:203–6.

    Article  PubMed  Google Scholar 

  87. Hsieh M-H, Lin Y-J, Wang H-H, et al. Functional characterization of atrial electrograms in a pacing-induced heart failure model of atrial fibrillation: importance of regional atrial connexin40 remodeling. J Cardiovasc Electrophysiol. 2013;24:573–82.

    Article  PubMed  Google Scholar 

  88. Tisdale JE, Borzak S, Sabbah HN, Shimoyama H, Goldstein S. Hemodynamic and neurohormonal predictors and consequences of the development of atrial fibrillation in dogs with chronic heart failure. J Card Fail. 2006;12:747–51.

    Article  PubMed  CAS  Google Scholar 

  89. Zankov DP, Omatsu-Kanbe M, Isono T, et al. Angiotensin II potentiates the slow component of delayed rectifier K + current via the AT1 receptor in guinea pig atrial myocytes. Circulation. 2006;113:1278–86.

    Article  PubMed  CAS  Google Scholar 

  90. El-Armouche A, Eschenhagen T. Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev. 2009;14:225–41.

    Article  PubMed  CAS  Google Scholar 

  91. Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation. 1999;100:87–95.

    Article  PubMed  CAS  Google Scholar 

  92. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.

    Article  PubMed  Google Scholar 

  93. Sasaki N, Okumura Y, Watanabe I, et al. Increased levels of inflammatory and extracellular matrix turnover biomarkers persist despite reverse atrial structural remodeling during the first year after atrial fibrillation ablation. J Interv Card Electrophysiol. 2014;39:241–9.

    Article  PubMed  Google Scholar 

  94. Wyse DG, Waldo AL, DiMarco JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347:1825–33.

    Article  PubMed  CAS  Google Scholar 

  95. Roy D, Talajic M, Nattel S, et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med. 2008;358:2667–77.

    Article  PubMed  CAS  Google Scholar 

  96. Hohnloser SH, Kuck KH, Lilienthal J. Rhythm or rate control in atrial fibrillation—pharmacological intervention in atrial fibrillation (PIAF): a randomised trial. Lancet. 2000;356:1789–94.

    Article  PubMed  CAS  Google Scholar 

  97. Carlsson J, Miketic S, Windeler J, et al. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation: the strategies of treatment of atrial fibrillation (STAF) study. J Am Coll Cardiol. 2003;41:1690–6.

    Article  PubMed  Google Scholar 

  98. Opolski G, Torbicki A, Kosior DA, et al. Rate control vs rhythm control in patients with nonvalvular persistent atrial fibrillation: the results of the polish how to treat chronic atrial fibrillation (HOT CAFE) study. Chest. 2004;126:476–86.

    Article  PubMed  Google Scholar 

  99. Van Gelder IC, Hagens VE, Bosker HA, et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med. 2002;347:1834–40.

    Article  PubMed  Google Scholar 

  100. Jones DG, Haldar SK, Hussain W, et al. A randomized trial to assess catheter ablation versus rate control in the management of persistent atrial fibrillation in heart failure. J Am Coll Cardiol. 2013;61:1894–903.

    Article  PubMed  Google Scholar 

  101. Hunter RJ, Berriman TJ, Diab I, et al. A randomized controlled trial of catheter ablation versus medical treatment of atrial fibrillation in heart failure (the CAMTAF trial). Circ Arrhythmia Electrophysiol. 2014;7:31–8.

    Article  CAS  Google Scholar 

  102. Morillo CA, Verma A, Connolly SJ, et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of paroxysmal atrial fibrillation (RAAFT-2): a randomized trial. JAMA. 2014;311:692–700.

    Article  PubMed  CAS  Google Scholar 

  103. Marrouche NF, Brachmann J. Catheter ablation versus standard conventional treatment in patients with left ventricular dysfunction and atrial fibrillation (CASTLE-AF)—study design. Pacing Clin Electrophysiol. 2009;32:987–94.

    Article  PubMed  Google Scholar 

  104. Mayo Clinic, National Heart Lung Blood Institute, St. Jude Medical, Biosense Webster Inc. Catheter Ablation vs Anti-arrhythmic Drug Therapy for Atrial Fibrillation Trial (CABANA). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-[2014 June 14]: Available from: http://clinicaltrials.gov/ct2/show/NCT00911508 NLM Identifier: NCT00911508, 2014.

  105. German Atrial Fibrillation Network. Early Treatment of Atrial Fibrillation for Stroke Prevention Trial (EAST). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [2014 Jun 14], 2014.

  106. Pathak R, Middeldor M, Lau D, Sanders P. Aggressive risk factor reduction study for atrial fibrillation (ARREST-AF): implications for ablation outcomes. San Francisco: Heart Rhythm Society Scientific Sessions; 2014.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Christina Luong, Marion E. Barnes, and Teresa S.M. Tsang declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa S. M. Tsang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luong, C., Barnes, M.E. & Tsang, T.S.M. Atrial Fibrillation and Heart Failure: Cause or Effect?. Curr Heart Fail Rep 11, 463–470 (2014). https://doi.org/10.1007/s11897-014-0229-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-014-0229-1

Keywords

Navigation