Skip to main content
Log in

Heart Failure and Tachycardia-Induced Cardiomyopathy

  • Prevention of Heart Failure (M St. John Sutton, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Congestive heart failure is a major health care concern affecting almost six million Americans and an estimated 23 million people worldwide, and its prevalence is increasing with time. Long-standing tachycardia is a well-recognized cause of heart failure and left ventricular dysfunction and has led to the nomenclature, tachycardia-induced cardiomyopathy. Tachycardia-induced cardiomyopathy is generally a reversible cardiomyopathy with effective treatment of the causative arrhythmia, either with medications, surgery, or catheter ablation. Tachycardia-induced cardiomyopathy remains poorly understood and is likely under-diagnosed. A better understanding of tachycardia-induced cardiomyopathy and improved recognition of its presence in clinical practice is vital to the health of patients with this disorder. The goal of this review is to discuss the pathogenesis and clinical manifestations of tachycardia-induced cardiomyopathy, as well as approaches to its diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CHF:

Congestive heart failure

TIC:

Tachycardia-induced cardiomyopathy

LV:

Left ventricle

AF:

Atrial fibrillation

SVT:

Supraventricular tachycardia

VT:

Ventricular tachycardia

PVCs:

Premature ventricular contractions

AV:

Atrioventricular

AT:

Atrial tachycardia

AVNRT:

Atrioventricular nodal reentrant tachycardia

AVRT:

Atrioventricular reciprocating tachycardia

PJRT:

Persistent junctional reciprocating tachycardia

LVEF:

Left ventricular ejection fraction

AADs:

Antiarrhythmic drugs

References

Papers of particular interest or published recently have been highlighted as: • Of importance

  1. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–e215.

    Article  PubMed  Google Scholar 

  2. McCullough PA, Philbin EF, Spertus JA, Kaatz S, Sandberg KR, Weaver WD. Confirmation of a heart failure epidemic: findings from the Resource Utilization Among Congestive Heart Failure (REACH) study. J Am Coll Cardiol. 2002;39:60–9.

    Article  PubMed  Google Scholar 

  3. Owan TE, Redfield MM. Epidemiology of diastolic heart failure. Progr Cardiovasc Dis. 2005;47:320–32.

    Article  Google Scholar 

  4. Gossage AM, Braxton Hicks J. On auricular fibrillation. QJM 1913:435–40.

  5. Coleman 3rd HN, Taylor RR, Pool PE, et al. Congestive heart failure following chronic tachycardia. Am Heart J. 1971;81:790–8.

    Article  PubMed  Google Scholar 

  6. Armstrong PW, Stopps TP, Ford SE, de Bold AJ. Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulation. 1986;74:1075–84.

    Article  PubMed  CAS  Google Scholar 

  7. Wilson JR, Douglas P, Hickey WF, et al. Experimental congestive heart failure produced by rapid ventricular pacing in the dog: cardiac effects. Circulation. 1987;75:857–67.

    Article  PubMed  CAS  Google Scholar 

  8. Scott BD, Sharma MK, Levett JM, et al. Cardiac geometry and mass changes associated with pacing-induced cardiomyopathy in the dog. Am Heart J. 1993;125:1047–53.

    Article  PubMed  CAS  Google Scholar 

  9. Spinale FG, Hendrick DA, Crawford FA, Smith AC, Hamada Y, Carabello BA. Chronic supraventricular tachycardia causes ventricular dysfunction and subendocardial injury in swine. Am J Physiol. 1990;259:H218–29.

    PubMed  CAS  Google Scholar 

  10. Thackray SD, Witte KK, Nikitin NP, Clark AL, Kaye GC, Cleland JG. The prevalence of heart failure and asymptomatic left ventricular systolic dysfunction in a typical regional pacemaker population. Eur Heart J. 2003;24:1143–52.

    Article  PubMed  Google Scholar 

  11. Wilkoff BL, Cook JR, Epstein AE, et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA. 2002;288:3115–23.

    Article  PubMed  Google Scholar 

  12. Gardiwal A, Yu H, Oswald H, et al. Right ventricular pacing is an independent predictor for ventricular tachycardia/ventricular fibrillation occurrence and heart failure events in patients with an implantable cardioverter-defibrillator. Europace. 2008;10:358–63.

    Article  PubMed  Google Scholar 

  13. Delgado V, Tops LF, Trines SA, et al. Acute effects of right ventricular apical pacing on left ventricular synchrony and mechanics. Circ Arrhythmia Electrophysiol. 2009;2:135–45.

    Article  Google Scholar 

  14. Lee SJ, McCulloch C, Mangat I, Foster E, De Marco T, Saxon LA. Isolated bundle branch block and left ventricular dysfunction. J Card Fail. 2003;9:87–92.

    Article  PubMed  Google Scholar 

  15. Blanc JJ, Fatemi M, Bertault V, Baraket F, Etienne Y. Evaluation of left bundle branch block as a reversible cause of non-ischaemic dilated cardiomyopathy with severe heart failure. A new concept of left ventricular dyssynchrony-induced cardiomyopathy. Europace. 2005;7:604–10.

    Article  PubMed  Google Scholar 

  16. ten Cate FE U, Kruessell MA, Wagner K, et al. Dilated cardiomyopathy in children with ventricular preexcitation: the location of the accessory pathway is predictive of this association. J Electrocardiol. 2010;43:146–54.

    Article  Google Scholar 

  17. Cadrin-Tourigny J, Fournier A, Andelfinger G, Khairy P. Severe left ventricular dysfunction in infants with ventricular preexcitation. Heart Rhythm. 2008;5:1320–2.

    Article  PubMed  Google Scholar 

  18. Howard RJ, Moe GW, Armstrong PW. Sequential echocardiographic-Doppler assessment of left ventricular remodelling and mitral regurgitation during evolving experimental heart failure. Cardiovasc Res. 1991;25:468–74.

    Article  PubMed  CAS  Google Scholar 

  19. Shannon RP, Komamura K, Stambler BS, Bigaud M, Manders WT, Vatner SF. Alterations in myocardial contractility in conscious dogs with dilated cardiomyopathy. Am J Physiol. 1991;260:H1903–11.

    PubMed  CAS  Google Scholar 

  20. Ohno M, Cheng CP, Little WC. Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation. 1994;89:2241–50.

    Article  PubMed  CAS  Google Scholar 

  21. Howard RJ, Stopps TP, Moe GW, Gotlieb A, Armstrong PW. Recovery from heart failure: structural and functional analysis in a canine model. Can J Physiol Pharmacol. 1988;66:1505–12.

    Article  PubMed  CAS  Google Scholar 

  22. Morgan DE, Tomlinson CW, Qayumi AK, Toleikis PM, McConville B, Jamieson WR. Evaluation of ventricular contractility indexes in the dog with left ventricular dysfunction induced by rapid atrial pacing. J Am Coll Cardiol. 1989;14:489–95. discussion 96–8.

    Article  PubMed  CAS  Google Scholar 

  23. O'Brien PJ, Ianuzzo CD, Moe GW, Stopps TP, Armstrong PW. Rapid ventricular pacing of dogs to heart failure: biochemical and physiological studies. Can J Physiol Pharmacol. 1990;68:34–9.

    Article  PubMed  Google Scholar 

  24. Moe GW, Stopps TP, Howard RJ, Armstrong PW. Early recovery from heart failure: insights into the pathogenesis of experimental chronic pacing-induced heart failure. J Lab Clin Med. 1988;112:426–32.

    PubMed  CAS  Google Scholar 

  25. Tanaka R, Spinale FG, Crawford FA, Zile MR. Effect of chronic supraventricular tachycardia on left ventricular function and structure in newborn pigs. J Am Coll Cardiol. 1992;20:1650–60.

    Article  PubMed  CAS  Google Scholar 

  26. Moe GW, Angus C, Howard RJ, Parker TG, Armstrong PW. Evaluation of indices of left ventricular contractility and relaxation in evolving canine experimental heart failure. Cardiovasc Res. 1992;26:362–6.

    Article  PubMed  CAS  Google Scholar 

  27. Tibayan FA, Lai DT, Timek TA, et al. Alterations in left ventricular torsion in tachycardia-induced dilated cardiomyopathy. J Thorac Cardiovasc Surg. 2002;124:43–9.

    Article  PubMed  Google Scholar 

  28. Damiano Jr RJ, Tripp Jr HF, Asano T, Small KW, Jones RH, Lowe JE. Left ventricular dysfunction and dilatation resulting from chronic supraventricular tachycardia. J Thorac Cardiovasc Surg. 1987;94:135–43.

    PubMed  Google Scholar 

  29. Spinale FG, Tomita M, Zellner JL, Cook JC, Crawford FA, Zile MR. Collagen remodeling and changes in LV function during development and recovery from supraventricular tachycardia. Am J Physiol. 1991;261:H308–18.

    PubMed  CAS  Google Scholar 

  30. Riegger AJ, Liebau G. The renin-angiotensin-aldosterone system, antidiuretic hormone and sympathetic nerve activity in an experimental model of congestive heart failure in the dog. Clin Sci (Lond). 1982;62:465–9.

    CAS  Google Scholar 

  31. Moe GW, Stopps TP, Angus C, Forster C, De Bold AJ, Armstrong PW. Alterations in serum sodium in relation to atrial natriuretic factor and other neuroendocrine variables in experimental pacing-induced heart failure. J Am Coll Cardiol. 1989;13:173–9.

    Article  PubMed  CAS  Google Scholar 

  32. Spinale FG, Clayton C, Tanaka R, et al. Myocardial Na+, K(+)-ATPase in tachycardia induced cardiomyopathy. J Mol Cell Cardiol. 1992;24:277–94.

    Article  PubMed  CAS  Google Scholar 

  33. Qin F, Shite J, Mao W, Liang CS. Selegiline attenuates cardiac oxidative stress and apoptosis in heart failure: association with improvement of cardiac function. Eur J Pharmacol. 2003;461:149–58.

    Article  PubMed  CAS  Google Scholar 

  34. Shite J, Qin F, Mao W, Kawai H, Stevens SY, Liang C. Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy. J Am Coll Cardiol. 2001;38:1734–40.

    Article  PubMed  CAS  Google Scholar 

  35. Spinale FG, Grine RC, Tempel GE, Crawford FA, Zile MR. Alterations in the myocardial capillary vasculature accompany tachycardia-induced cardiomyopathy. Basic Res Cardiol. 1992;87:65–79.

    Article  PubMed  CAS  Google Scholar 

  36. Shannon RP, Komamura K, Shen YT, Bishop SP, Vatner SF. Impaired regional subendocardial coronary flow reserve in conscious dogs with pacing-induced heart failure. Am J Physiol. 1993;265:H801–9.

    PubMed  CAS  Google Scholar 

  37. Calderone A, Bouvier M, Li K, Juneau C, de Champlain J, Rouleau JL. Dysfunction of the beta- and alpha-adrenergic systems in a model of congestive heart failure. The pacing-overdrive dog. Circ Res. 1991;69:332–43.

    Article  PubMed  CAS  Google Scholar 

  38. Marzo KP, Frey MJ, Wilson JR, et al. Beta-adrenergic receptor-G protein-adenylate cyclase complex in experimental canine congestive heart failure produced by rapid ventricular pacing. Circ Res. 1991;69:1546–56.

    Article  PubMed  CAS  Google Scholar 

  39. Yonemochi H, Yasunaga S, Teshima Y, et al. Rapid electrical stimulation of contraction reduces the density of beta-adrenergic receptors and responsiveness of cultured neonatal rat cardiomyocytes. Possible involvement of microtubule disassembly secondary to mechanical stress. Circulation. 2000;101:2625–30.

    Article  PubMed  CAS  Google Scholar 

  40. Omichi C, Tanaka T, Kakizawa Y, et al. Improvement of cardiac function and neurological remodeling in a patient with tachycardia-induced cardiomyopathy after catheter ablation. J Cardiol. 2009;54:134–8.

    Article  PubMed  Google Scholar 

  41. Perreault CL, Shannon RP, Komamura K, Vatner SF, Morgan JP. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure. J Clin Investig. 1992;89:932–8.

    Article  PubMed  CAS  Google Scholar 

  42. Yamamoto K, Burnett Jr JC, Meyer LM, Sinclair L, Stevens TL, Redfield MM. Ventricular remodeling during development and recovery from modified tachycardia-induced cardiomyopathy model. Am J Physiol. 1996;271:R1529–34.

    PubMed  CAS  Google Scholar 

  43. Spinale FG, Holzgrefe HH, Mukherjee R, et al. LV and myocyte structure and function after early recovery from tachycardia-induced cardiomyopathy. Am J Physiol. 1995;268:H836–47.

    PubMed  CAS  Google Scholar 

  44. Tomita M, Spinale FG, Crawford FA, Zile MR. Changes in left ventricular volume, mass, and function during the development and regression of supraventricular tachycardia-induced cardiomyopathy. Disparity between recovery of systolic versus diastolic function. Circulation. 1991;83:635–44.

    Article  PubMed  CAS  Google Scholar 

  45. Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM. Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol. 1997;29:709–15.

    Article  PubMed  CAS  Google Scholar 

  46. Krapp M, Gembruch U, Baumann P. Venous blood flow pattern suggesting tachycardia-induced 'cardiomyopathy' in the fetus. Ultrasound Obstet Gynecol. 1997;10:32–40.

    Article  PubMed  CAS  Google Scholar 

  47. Dhala A, Thomas JP. Images in cardiovascular medicine. Reversible tachycardia-induced cardiomyopathy. Circulation. 1997;95:2327–8.

    Article  PubMed  CAS  Google Scholar 

  48. Sanchez C, Benito F, Moreno F. Reversibility of tachycardia-induced cardiomyopathy after radiofrequency ablation of incessant supraventricular tachycardia in infants. Br Heart J. 1995;74:332–3.

    Article  PubMed  CAS  Google Scholar 

  49. De Giovanni JV, Dindar A, Griffith MJ, et al. Recovery pattern of left ventricular dysfunction following radiofrequency ablation of incessant supraventricular tachycardia in infants and children. Heart. 1998;79:588–92.

    PubMed  Google Scholar 

  50. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med. 2002;113:359–64.

    Article  PubMed  Google Scholar 

  51. Van Gelder IC, Crijns HJ, Blanksma PK, et al. Time course of hemodynamic changes and improvement of exercise tolerance after cardioversion of chronic atrial fibrillation unassociated with cardiac valve disease. Am J Cardiol. 1993;72:560–6.

    Article  PubMed  Google Scholar 

  52. Twidale N, Sutton K, Bartlett L, et al. Effects on cardiac performance of atrioventricular node catheter ablation using radiofrequency current for drug-refractory atrial arrhythmias. Pacing Clin Electrophysiol. 1993;16:1275–84.

    Article  PubMed  CAS  Google Scholar 

  53. Heinz G, Siostrzonek P, Kreiner G, Gossinger H. Improvement in left ventricular systolic function after successful radiofrequency His bundle ablation for drug refractory, chronic atrial fibrillation and recurrent atrial flutter. Am J Cardiol. 1992;69:489–92.

    Article  PubMed  CAS  Google Scholar 

  54. Manolis AG, Katsivas AG, Lazaris EE, Vassilopoulos CV, Louvros NE. Ventricular performance and quality of life in patients who underwent radiofrequency AV junction ablation and permanent pacemaker implantation due to medically refractory atrial tachyarrhythmias. J Intervent Card Electrophysiol. 1998;2:71–6.

    Article  CAS  Google Scholar 

  55. Redfield MM, Kay GN, Jenkins LS, Mianulli M, Jensen DN, Ellenbogen KA. Tachycardia-related cardiomyopathy: a common cause of ventricular dysfunction in patients with atrial fibrillation referred for atrioventricular ablation. Mayo Clin Proc. 2000;75:790–5.

    Article  PubMed  CAS  Google Scholar 

  56. Brignole M, Gianfranchi L, Menozzi C, et al. Influence of atrioventricular junction radiofrequency ablation in patients with chronic atrial fibrillation and flutter on quality of life and cardiac performance. Am J Cardiol. 1994;74:242–6.

    Article  PubMed  CAS  Google Scholar 

  57. Natale A, Zimerman L, Tomassoni G, et al. Impact on ventricular function and quality of life of transcatheter ablation of the atrioventricular junction in chronic atrial fibrillation with a normal ventricular response. Am J Cardiol. 1996;78:1431–3.

    Article  PubMed  CAS  Google Scholar 

  58. • Gentlesk PJ, Sauer WH, Gerstenfeld EP, et al. Reversal of left ventricular dysfunction following ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18:9–14. This is a single center study reporting outcomes for patients with atrial fibrillation and depressed left ventricular function following catheter ablation.

    Article  PubMed  Google Scholar 

  59. • Pizzale S, Lemery R, Green MS, Gollob MH, Tang AS, Birnie DH. Frequency and predictors of tachycardia-induced cardiomyopathy in patients with persistent atrial flutter. Can J Cardiol. 2009;25:469–72. This is a recent single center study reporting the incidence and outcomes of patients with tachycardia-induced cardiomyopathy secondary to atrial flutter.

    Article  PubMed  Google Scholar 

  60. Scheinman MM, Basu D, Hollenberg M. Electrophysiologic studies in patients with persistent atrial tachycardia. Circulation. 1974;50:266–73.

    Article  PubMed  CAS  Google Scholar 

  61. Bertil Olsson S, Blomstrom P, Sabel KG, William-Olsson G. Incessant ectopic atrial tachycardia: successful surgical treatment with regression of dilated cardiomyopathy picture. Am J Cardiol. 1984;53:1465–6.

    Article  PubMed  CAS  Google Scholar 

  62. Gillette PC, Smith RT, Garson Jr A, et al. Chronic supraventricular tachycardia. A curable cause of congestive cardiomyopathy. JAMA. 1985;253:391–2.

    Article  PubMed  CAS  Google Scholar 

  63. Gillette PC, Wampler DG, Garson Jr A, Zinner A, Ott D, Cooley D. Treatment of atrial automatic tachycardia by ablation procedures. J Am Coll Cardiol. 1985;6:405–9.

    Article  PubMed  CAS  Google Scholar 

  64. Cruz FE, Cheriex EC, Smeets JL, et al. Reversibility of tachycardia-induced cardiomyopathy after cure of incessant supraventricular tachycardia. J Am Coll Cardiol. 1990;16:739–44.

    Article  PubMed  CAS  Google Scholar 

  65. Chiladakis JA, Vassilikos VP, Maounis TN, Cokkinos DV, Manolis AS. Successful radiofrequency catheter ablation of automatic atrial tachycardia with regression of the cardiomyopathy picture. Pacing Clin Electrophysiol. 1997;20:953–9.

    Article  PubMed  CAS  Google Scholar 

  66. • Medi C, Kalman JM, Haqqani H, et al. Tachycardia-mediated cardiomyopathy secondary to focal atrial tachycardia: long-term outcome after catheter ablation. J Am Coll Cardiol. 2009;53:1791–7. This is a recent single center study reporting the incidence and long-term outcomes of patients with tachycardia-induced cardiomyopathy secondary to incessant atrial tachycardia.

    Article  PubMed  Google Scholar 

  67. Packer DL, Bardy GH, Worley SJ, et al. Tachycardia-induced cardiomyopathy: a reversible form of left ventricular dysfunction. Am J Cardiol. 1986;57:563–70.

    Article  PubMed  CAS  Google Scholar 

  68. Fishberger SB, Colan SD, Saul JP, Mayer Jr JE, Walsh EP. Myocardial mechanics before and after ablation of chronic tachycardia. Pacing Clin Electrophysiol. 1996;19:42–9.

    Article  PubMed  CAS  Google Scholar 

  69. Aguinaga L, Primo J, Anguera I, et al. Long-term follow-up in patients with the permanent form of junctional reciprocating tachycardia treated with radiofrequency ablation. Pacing Clin Electrophysiol. 1998;21:2073–8.

    Article  PubMed  CAS  Google Scholar 

  70. Corey WA, Markel ML, Hoit BD, Walsh RA. Regression of a dilated cardiomyopathy after radiofrequency ablation of incessant supraventricular tachycardia. Am Heart J. 1993;126:1469–73.

    Article  PubMed  CAS  Google Scholar 

  71. Leman RB, Gillette PC, Zinner AJ. Resolution of congestive cardiomyopathy caused by supraventricular tachycardia using amiodarone. Am Heart J. 1986;112:622–4.

    Article  PubMed  CAS  Google Scholar 

  72. Wu D, Denes P, Dhingra R, Pietras RJ, Rosen KM. New manifestations of dual A-V nodal pathways. Eur J Cardiol. 1975;2:459–66.

    PubMed  CAS  Google Scholar 

  73. • Wang NC. Dual atrioventricular nodal nonreentrant tachycardia: a systematic review. Pacing Clin Electrophysiol. 2011;34:1671–81. This is a recent systematic review of all reported cases of dual atrioventricular nodal nonreentrant tachycardia reporting the prevalence of tachycardia-induced cardiomyopathy as well as its response to treatment.

    Article  PubMed  Google Scholar 

  74. Anselme F, Boyle N, Josephson M. Incessant fascicular tachycardia: a cause of arrhythmia induced cardiomyopathy. Pacing Clin Electrophysiol. 1998;21:760–3.

    Article  PubMed  CAS  Google Scholar 

  75. Vijgen J, Hill P, Biblo LA, Carlson MD. Tachycardia-induced cardiomyopathy secondary to right ventricular outflow tract ventricular tachycardia: improvement of left ventricular systolic function after radiofrequency catheter ablation of the arrhythmia. J Cardiovasc Electrophysiol. 1997;8:445–50.

    Article  PubMed  CAS  Google Scholar 

  76. Singh B, Kaul U, Talwar KK, Wasir HS. Reversibility of "tachycardia induced cardiomyopathy" following the cure of idiopathic left ventricular tachycardia using radiofrequency energy. Pacing Clin Electrophysiol. 1996;19:1391–2.

    Article  PubMed  CAS  Google Scholar 

  77. • Hasdemir C, Ulucan C, Yavuzgil O, et al. Tachycardia-induced cardiomyopathy in patients with idiopathic ventricular arrhythmias: the incidence, clinical and electrophysiologic characteristics, and the predictors. J Cardiovasc Electrophysiol. 2011;22:663–8. This is a recent single center study reporting the prevalence of tachycardia-induced cardiomyopathy in patients presenting with premature ventricular contractions and/or ventricular tachycardia, as well as predictors of the development of tachycardia-induced cardiomyopathy.

    Article  PubMed  Google Scholar 

  78. Grimm W, Menz V, Hoffmann J, Maisch B. Reversal of tachycardia induced cardiomyopathy following ablation of repetitive monomorphic right ventricular outflow tract tachycardia. Pacing Clin Electrophysiol. 2001;24:166–71.

    Article  PubMed  CAS  Google Scholar 

  79. • Baman TS, Lange DC, Ilg KJ, et al. Relationship between burden of premature ventricular complexes and left ventricular function. Heart Rhythm. 2010;7:865–9. This is a recent single center study of patients with frequent idiopathic premature ventricular contractions reporting the relationship to premature ventricular contraction burden and the development of tachycardia-induced cardiomyopathy.

    Article  PubMed  Google Scholar 

  80. Satish OS, Yeh KH, Wen MS, Wang CC. Premature ventricular contraction-induced concealed mechanical bradycardia and dilated cardiomyopathy. J Cardiovasc Electrophysiol. 2005;16:88–91.

    Article  PubMed  Google Scholar 

  81. Bogun F, Crawford T, Reich S, et al. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart Rhythm. 2007;4:863–7.

    Article  PubMed  Google Scholar 

  82. • Mountantonakis SE, Frankel DS, Gerstenfeld EP, et al. Reversal of outflow tract ventricular premature depolarization-induced cardiomyopathy with ablation: effect of residual arrhythmia burden and preexisting cardiomyopathy on outcome. Heart Rhythm. 2011;8:1608–14. This is a single center study reporting the safety, efficacy, and long-term effect of catheter ablation of premature ventricular contractions on left ventricular dysfunction, as well as the impact of residual premature ventricular contractions on recovery of left ventricular function.

    Article  PubMed  Google Scholar 

  83. • Deyell MW, Park KM, Han Y, et al. Predictors of recovery of left ventricular dysfunction after ablation of frequent ventricular premature depolarizations. Heart Rhythm. 2012;9:1465–72. This is a recent single center study reporting predictors of recovery of left ventricular function following ablation of frequent premature ventricular contractions.

    Article  PubMed  Google Scholar 

  84. • Yokokawa M, Kim HM, Good E, et al. Impact of QRS duration of frequent premature ventricular complexes on the development of cardiomyopathy. Heart Rhythm. 2012;9:1460–4. This is a recent single center study evaluating the impact of QRS duration of frequent premature contractions on the development of cardiomyopathy.

    Article  PubMed  Google Scholar 

  85. • Yokokawa M, Good E, Crawford T, et al. Recovery from left ventricular dysfunction after ablation of frequent premature ventricular complexes. Heart Rhythm. 2013;10:172–5. This is a recent single center study reporting the time course and predictors of recovery of left ventricular dysfunction after ablation of premature ventricular contractions.

    Article  PubMed  Google Scholar 

  86. Hasdemir C, Musayev O, Kehribar DY, Kartal Y, Can LH. Chronic Cough and Tachycardia-Induced Cardiomyopathy in a Patient with Idiopathic Frequent, Monomorphic Premature Ventricular Contractions. Pacing Clin Electrophysiol. 2011;36:e156–8.

    Google Scholar 

  87. • Del Carpio Munoz F, Syed FF, Noheria A, et al. Characteristics of premature ventricular complexes as correlates of reduced left ventricular systolic function: study of the burden, duration, coupling interval, morphology and site of origin of PVCs. J Cardiovasc Electrophysiol. 2011;22:791–8. This is a single center study reporting predictors of cardiomyopathy development in patients with frequent premature ventricular contractions.

    Article  PubMed  Google Scholar 

  88. Niwano S, Wakisaka Y, Niwano H, et al. Prognostic significance of frequent premature ventricular contractions originating from the ventricular outflow tract in patients with normal left ventricular function. Heart. 2009;95:1230–7.

    Article  PubMed  CAS  Google Scholar 

  89. Kanei Y, Friedman M, Ogawa N, Hanon S, Lam P, Schweitzer P. Frequent premature ventricular complexes originating from the right ventricular outflow tract are associated with left ventricular dysfunction. Ann Noninvasive Electrocardiol. 2008;13:81–5.

    Article  PubMed  Google Scholar 

  90. • Hasdemir C, Kartal Y, Simsek E, Yavuzgil O, Aydin M, Can LH. Time Course of Recovery of Left Ventricular Systolic Dysfunction in Patients with Premature Ventricular Contraction-Induced Cardiomyopathy. Pacing Clin Electrophysiol. 2013;36:612–7. This is a recent single center study reporting time course and degree of recovery of left ventricular dysfunction following treatment of arrhythmias based on echocardiographic characteristics.

  91. Jeong YH, Choi KJ, Song JM, et al. Diagnostic approach and treatment strategy in tachycardia-induced cardiomyopathy. Clin Cardiol. 2008;31:172–8.

    Article  PubMed  Google Scholar 

  92. Rabbani LE, Wang PJ, Couper GL, Friedman PL. Time course of improvement in ventricular function after ablation of incessant automatic atrial tachycardia. Am Heart J. 1991;121:816–9.

    Article  PubMed  CAS  Google Scholar 

  93. Lee SH, Chen SA, Tai CT, et al. Comparisons of quality of life and cardiac performance after complete atrioventricular junction ablation and atrioventricular junction modification in patients with medically refractory atrial fibrillation. J Am Coll Cardiol. 1998;31:637–44.

    Article  PubMed  CAS  Google Scholar 

  94. Dandamudi G, Rampurwala AY, Mahenthiran J, Miller JM, Das MK. Persistent left ventricular dilatation in tachycardia-induced cardiomyopathy patients after appropriate treatment and normalization of ejection fraction. Heart Rhythm. 2008;5:1111–4.

    Article  PubMed  Google Scholar 

  95. Nerheim P, Birger-Botkin S, Piracha L, Olshansky B. Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. Circulation. 2004;110:247–52.

    Article  PubMed  Google Scholar 

  96. Watanabe H, Okamura K, Chinushi M, et al. Clinical characteristics, treatment, and outcome of tachycardia induced cardiomyopathy. Int Heart J. 2008;49:39–47.

    Article  PubMed  CAS  Google Scholar 

  97. Kieny JR, Sacrez A, Facello A, et al. Increase in radionuclide left ventricular ejection fraction after cardioversion of chronic atrial fibrillation in idiopathic dilated cardiomyopathy. Eur Heart J. 1992;13:1290–5.

    PubMed  CAS  Google Scholar 

  98. Ilkhanoff L, Gerstenfeld EP, Zado ES, Marchlinski FE. Changes in ventricular dimensions and function during recovery of atrial tachycardia-induced cardiomyopathy treated with catheter ablation. J Cardiovasc Electrophysiol. 2007;18:1104–6.

    Article  PubMed  Google Scholar 

  99. Lacroix D, Gluais P, Marquie C, D'Hoinne C, Adamantidis M, Bastide M. Repolarization abnormalities and their arrhythmogenic consequences in porcine tachycardia-induced cardiomyopathy. Cardiovasc Res. 2002;54:42–50.

    Article  PubMed  CAS  Google Scholar 

  100. Pak PH, Nuss HB, Tunin RS, et al. Repolarization abnormalities, arrhythmia and sudden death in canine tachycardia-induced cardiomyopathy. J Am Coll Cardiol. 1997;30:576–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Ethan R. Ellis declares that he has no conflict of interest.

Mark E. Josephson declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Josephson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, E.R., Josephson, M.E. Heart Failure and Tachycardia-Induced Cardiomyopathy. Curr Heart Fail Rep 10, 296–306 (2013). https://doi.org/10.1007/s11897-013-0150-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-013-0150-z

Keywords

Navigation