Skip to main content
Log in

Aficamten: A Breakthrough Therapy for Symptomatic Obstructive Hypertrophic Cardiomyopathy

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Aficamten is a novel cardiac myosin inhibitor that has demonstrated its ability to safely lower left ventricular outflow tract (LVOT) gradients and improve heart failure symptoms in patients with obstructive hypertrophic cardiomyopathy (HCM). Based on the REDWOOD-HCM open label extension (OLE) study, participants receiving aficamten had significantly reduced resting and Valsalva LVOT gradient within 2 weeks after initiating treatment, with ongoing improvements over 24 weeks, and recent evidence suggests effects can sustain up to 48 weeks. While beta-blockers, calcium channel blockers, and disopyramide have shown some benefits in managing HCM, they have limited direct impact on the underlying disease process in patients with obstructive HCM. Aficamten achieves its therapeutic effect by reducing hypercontractility and improving diastolic function in obstructive HCM. Mavacamten was the first cardiac myosin inhibitor approved for symptomatic obstructive HCM. However, aficamten has a shorter human half-life (t1/2) and fewer drug–drug interactions, making it a preferable treatment option. This review evaluates the long-term clinical value and safety of aficamten in patients with obstructive HCM based on available data from completed and ongoing clinical trials. Additionally, the molecular basis of sarcomere-targeted therapy in reducing LVOT gradients is explored, and its potential in managing obstructive HCM is discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Created with BioRender.com

Fig. 2

Created with BioRender.com

Fig. 3

Created with BioRender.com

Fig. 4

Similar content being viewed by others

References

  1. Chuang C, Collibee S, Ashcraft L, et al. Discovery of aficamten (CK-274), a next-generation cardiac myosin inhibitor for the treatment of hypertrophic cardiomyopathy. J Med Chem. 2021;64(19):14142–52. https://doi.org/10.1021/acs.jmedchem.1c01290.

    Article  CAS  PubMed  Google Scholar 

  2. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249–54. https://doi.org/10.1016/j.jacc.2015.01.019.

    Article  PubMed  Google Scholar 

  3. Geisterfer-Lowrance AA, Kass S, Tanigawa G, et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 1990;62(5):999–1006. https://doi.org/10.1016/0092-8674(90)90274-i.

    Article  CAS  PubMed  Google Scholar 

  4. Harris SP, Lyons RG, Bezold KL. In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament. Circ Res. 2011;108(6):751–64. https://doi.org/10.1161/CIRCRESAHA.110.231670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spudich JA. Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Pflugers Arch. 2019;471(5):701–17. https://doi.org/10.1007/s00424-019-02259-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sebastian SA, Panthangi V, Singh K, et al. Hypertrophic cardiomyopathy: current treatment and future options. Curr Probl Cardiol. 2022;48(4): 101552. https://doi.org/10.1016/j.cpcardiol.2022.101552.

    Article  PubMed  Google Scholar 

  7. Ho CY, Carlsen C, Thune JJ, et al. Echocardiographic strain imaging to assess early and late consequences of sarcomere mutations in hypertrophic cardiomyopathy. Circ Cardiovasc Genet. 2009;2(4):314–21. https://doi.org/10.1161/CIRCGENETICS.109.862128.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ho CY, Olivotto I, Jacoby D, et al. Study design and rationale of EXPLORER-HCM: evaluation of mavacamten in adults with symptomatic obstructive hypertrophic cardiomyopathy. Circ Heart Fail. 2020;13(6): e006853. https://doi.org/10.1161/CIRCHEARTFAILURE.120.006853.

    Article  PubMed  Google Scholar 

  9. Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC Guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020;142(25):e533–57. https://doi.org/10.1161/CIR.0000000000000938.

    Article  PubMed  Google Scholar 

  10. Olivotto I, Oreziak A, Barriales-Villa R, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020;396(10253):759–69. https://doi.org/10.1016/S0140-6736(20)31792-X.

    Article  CAS  PubMed  Google Scholar 

  11. Maron MS, Masri A, Choudhury L, et al. Phase 2 study of aficamten in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2023;81(1):34–45. https://doi.org/10.1016/j.jacc.2022.10.020.

    Article  CAS  PubMed  Google Scholar 

  12. Nag S, Trivedi DV, Sarkar SS, et al. The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat Struct Mol Biol. 2017;24(6):525–33. https://doi.org/10.1038/nsmb.3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spudich JA. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy. Biochem Soc Trans. 2015;43(1):64–72. https://doi.org/10.1042/BST20140324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trivedi DV, Adhikari AS, Sarkar SS, Ruppel KM, Spudich JA. Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light. Biophys Rev. 2018;10(1):27–48. https://doi.org/10.1007/s12551-017-0274-6.

    Article  CAS  PubMed  Google Scholar 

  15. Brunello E, Fusi L, Ghisleni A, et al. Myosin filament-based regulation of the dynamics of contraction in heart muscle. Proc Natl Acad Sci USA. 2020;117(14):8177–86. https://doi.org/10.1073/pnas.1920632117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Daniels MJ, Fusi L, Semsarian C, Naidu SS. Myosin modulation in hypertrophic cardiomyopathy and systolic heart failure: getting inside the engine. Circulation. 2021;144(10):759–62. https://doi.org/10.1161/CIRCULATIONAHA.121.056324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Day SM, Tardiff JC, Ostap EM. Myosin modulators: emerging approaches for the treatment of cardiomyopathies and heart failure. J Clin Investig. 2022;132(5): e148557. https://doi.org/10.1172/JCI148557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawana M, Spudich JA, Ruppel KM. Hypertrophic cardiomyopathy: mutations to mechanisms to therapies. Front Physiol. 2022;13: 975076. https://doi.org/10.3389/fphys.2022.975076.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Robert-Paganin J, Pylypenko O, Kikuti C, Sweeney HL, Houdusse A. Force generation by myosin motors: a structural perspective. Chem Rev. 2020;120(1):5–35. https://doi.org/10.1021/acs.chemrev.9b00264.

    Article  CAS  PubMed  Google Scholar 

  20. Lee KH, Sulbarán G, Yang S, et al. Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals. Proc Natl Acad Sci USA. 2018;115(9):E1991–2000. https://doi.org/10.1073/pnas.1715247115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Teerlink JR, Felker GM, McMurray JJ, et al. Chronic oral study of myosin activation to increase contractility in heart failure (COSMIC-HF): a phase 2, pharmacokinetic, randomised, placebo-controlled trial. Lancet. 2016;388(10062):2895–903. https://doi.org/10.1016/S0140-6736(16)32049-9.

    Article  CAS  PubMed  Google Scholar 

  22. Fang JC, Filippatos G, Fonseca C, et al. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med. 2021;384(2):105–16. https://doi.org/10.1056/NEJMoa2025797.

    Article  PubMed  Google Scholar 

  23. Lewis GD, Voors AA, Cohen-Solal A, et al. Effect of omecamtiv mecarbil on exercise capacity in chronic heart failure with reduced ejection fraction: the METEORIC-HF randomized clinical trial. JAMA. 2022;328(3):259–69. https://doi.org/10.1001/jama.2022.11016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Voors AA, Tamby JF, Cleland JG, et al. Effects of danicamtiv, a novel cardiac myosin activator, in heart failure with reduced ejection fraction: experimental data and clinical results from a phase 2a trial. Eur J Heart Fail. 2020;22(9):1649–58. https://doi.org/10.1002/ejhf.1933.

    Article  CAS  PubMed  Google Scholar 

  25. Heitner SB, Jacoby D, Lester SJ, et al. Mavacamten treatment for obstructive hypertrophic cardiomyopathy: a clinical trial. Ann Intern Med. 2019;170(11):741–8. https://doi.org/10.7326/M18-3016.

    Article  PubMed  Google Scholar 

  26. Ho CY, Mealiffe ME, Bach RG, et al. Evaluation of mavacamten in symptomatic patients with nonobstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2020;75(21):2649–60. https://doi.org/10.1016/j.jacc.2020.03.064.

    Article  CAS  PubMed  Google Scholar 

  27. Desai MY, Owens A, Geske JB, et al. Myosin inhibition in patients with obstructive hypertrophic cardiomyopathy referred for septal reduction therapy. J Am Coll Cardiol. 2022;80(2):95–108. https://doi.org/10.1016/j.jacc.2022.04.048.

    Article  CAS  PubMed  Google Scholar 

  28. Cytokinetics. Cytokinetics Presents New Data From REDWOOD-HCM OLE in Late Breaking Clinical Trial Session at the HFSA Annual Scientific Meeting. https://ir.cytokinetics.com/news-releases/news-release-details/cytokinetics-presents-new-data-redwood-hcm-ole-late-breaking-0. Accessed 3 Mar 2023.

  29. ClinicalTrials.gov. CY 6031 study will evaluate the effects of treatment with aficamten (CK-3773274) over a 24-week period on cardiopulmonary exercise capacity and health status in patients with symptomatic oHCM (SEQUOIA-HCM) SEQUOIA-HCM. https://www.clinicaltrials.gov/ct2/show/NCT05186818. Accessed 1 Mar 2023.

  30. Malik FI, Robertson LA, Armas DR, et al. A phase 1 dose-escalation study of the cardiac myosin inhibitor aficamten in healthy participants. JACC Basic Transl Sci. 2022;7(8):763–75. https://doi.org/10.1016/j.jacbts.2022.04.008.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Masri A, Olivotto I. Cardiac myosin inhibitors as a novel treatment option for obstructive hypertrophic cardiomyopathy: addressing the core of the matter. J Am Heart Assoc. 2022;11(9): e024656. https://doi.org/10.1161/JAHA.121.024656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Owens A, Masri A, Abraham T, et al. Efficacy and safety of aficamten and disopyramide coadministration in obstructive hypertrophic cardiomyopathy: results from REDWOOD-HCM cohort 3. J Am Coll Cardiol. 2022;79(9_Supplement):244. https://doi.org/10.1016/S0735-1097(22)01235-9.

    Article  Google Scholar 

  33. Cytokinetics. Cytokinetics Announces Results from Cohort 3 of REDWOOD-HCM Presented at American College of Cardiology 71st Annual Scientific Session. https://ir.cytokinetics.com/news-releases/news-release-details/cytokinetics-announces-results-cohort-3-redwood-hcm-presented. Accessed 8 May 2023.

  34. Masri A, Sherrid M, Choudhury L, et al. Aficamten in patients with symptomatic non-obstructive hypertrophic cardiomyopathy (REDWOOD-HCM cohort 4). J Am Coll Cardiol. 2023;81(8_Supplement):609. https://doi.org/10.1016/S0735-1097(23)01053-7.

    Article  Google Scholar 

  35. Cytokinetics. Cytokinetics presents positive results from cohort 4 of REDWOOD-HCM and long-term results from FOREST-HCM at the American College of Cardiology 72nd Annual Scientific Session. https://ir.cytokinetics.com/news-releases/news-release-details/cytokinetics-presents-positive-results-cohort-4-redwood-hcm-and. Accessed 8 May 2023.

  36. Saberi S, Abraham T, Choudhury L, et al. Long-term efficacy and safety of aficamten in patients with symptomatic obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2023;81(8):324. https://doi.org/10.1016/S0735-1097(23)00768-4.

    Article  Google Scholar 

  37. Saberi S., Abraham T, Choudhury L, et al. FOREST-HCM investigators. Long-term efficacy and safety of aficamten in patients with symptomatic obstructive hypertrophic cardiomyopathy. https://cytokinetics.com/wp-content/uploads/2023/03/ACC23-FOREST-HCM-Poster-FINAL-V2.pdf. Accessed 9 May 2023.

  38. ClinicalTrials.gov. CY 6022 is an Open Label Study to Collect Long-term Safety and Tolerability Data for Aficamten (CK-3773274) (FOREST-HCM). https://clinicaltrials.gov/ct2/show/NCT04848506. Accessed 4 Mar 2023.

  39. Cytokinetics. Cytokinetics Announces Start of SEQUOIA-HCM, a Phase 3 Clinical Trial of Aficamten in Patients with Symptomatic Obstructive Hypertrophic Cardiomyopathy. https://ir.cytokinetics.com/news-releases/news-release-details/cytokinetics-announces-start-sequoia-hcm-phase-3-clinical-trial. Accessed 3 Mar 2023.

  40. Cytokinetics. Cytokinetics Announces Receipt of Breakthrough Therapy Designation from FDA for Aficamten. https://ir.cytokinetics.com/news-releases/news-release-details/cytokinetics-announces-receipt-breakthrough-therapy-designation. Accessed 4 Mar 2023.

  41. Tsukamoto O. Direct sarcomere modulators are promising new treatments for cardiomyopathies. Int J Mol Sci. 2019;21(1):226. https://doi.org/10.3390/ijms21010226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Keam SJ. Mavacamten: first approval. Drugs. 2022;82(10):1127–35. https://doi.org/10.1007/s40265-022-01739-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grillo MP, Erve JCL, Dick R, et al. In vitro and in vivo pharmacokinetic characterization of mavacamten, a first-in-class small molecule allosteric modulator of beta cardiac myosin. Xenobiotica. 2019;49(6):718–33. https://doi.org/10.1080/00498254.2018.1495856.

    Article  CAS  PubMed  Google Scholar 

  44. MyoKardia, Inc., a wholly owned subsidiary of Bristol Myers Squibb. CAMZYOSTM (mavacamten): US prescribing information. 2022. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/214998s000lbl.pdf. Accessed 4 Mar 2023.

  45. Suman N, Darshan VT. To lie or not to lie: super-relaxing with myosins. Elife. 2021;10: e63703. https://doi.org/10.7554/eLife.63703.

    Article  Google Scholar 

  46. Packard E, de Feria A, Peshin S, Reza N, Owens AT. Contemporary therapies and future directions in the management of hypertrophic cardiomyopathy. Cardiol Ther. 2022;11(4):491–507. https://doi.org/10.1007/s40119-022-00283-5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. ClinicalTrials.gov. A Study to Evaluate the Efficacy, Safety, and Tolerability of MYK-224 in Participants with Symptomatic Obstructive Hypertrophic Cardiomyopathy. NCT05556343. https://clinicaltrials.gov/ct2/show/NCT05556343. Accessed 3 Mar 2023.

  48. BioSpace. MyoKardia Begins Dosing in Phase 1 Clinical Study of MYK-224 for Hypertrophic Cardiomyopathy. Aug 21, 2019. https://www.biospace.com/article/myokardia-begins-dosing-in-phase-1-clinical-study-of-myk-224-for-hypertrophic-cardiomyopathy/. Accessed 3 Mar 2023.

  49. Ferguson BS, Stern JA, Oldach MS, et al. Acute effects of a mavacamten-like myosin-inhibitor (MYK-581 in a feline model of obstructed hypertrophic cardiomyopathy: evidence of improved ventricular filling (beyond obstruction reprieve). Eur Heart J. 2020;41(2_Supplement):ehaa946.3713. https://doi.org/10.1093/ehjci/ehaa946.3713.

    Article  Google Scholar 

  50. ClinicalTrials.gov. Efficacy and Safety of Aficamten (CK-3773274) Compared with metoprolol succinate in adults with symptomatic hypertrophic cardiomyopathy and left ventricular outflow tract obstruction (MAPLE-HCM). Available at: https://www.clinicaltrials.gov/ct2/show/NCT05767346. Accessed 9 May 2023.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Annie Sebastian.

Ethics declarations

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors Sneha Annie Sebastian, Inderbir Padda, Eric J Lehr, and Gurpreet Johal declare that we have no conflict of interest. Also, the authors declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

The data that support the findings of this study are available within the article.

Code availability

Not applicable.

Author contributions

SAS: conceptualization, methodology, investigation, data curation, writing—original draft, writing—review and editing. IP: writing—original draft. EJL: writing—review and editing. GJ: writing—review and editing.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, S.A., Padda, I., Lehr, E.J. et al. Aficamten: A Breakthrough Therapy for Symptomatic Obstructive Hypertrophic Cardiomyopathy. Am J Cardiovasc Drugs 23, 519–532 (2023). https://doi.org/10.1007/s40256-023-00599-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-023-00599-0

Navigation