Skip to main content
Log in

Recent Advances and Clinical Applications of PET Cardiac Autonomic Nervous System Imaging

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review was to summarize current advances in positron emission tomography (PET) cardiac autonomic nervous system (ANS) imaging, with a specific focus on clinical applications of novel and established tracers.

Recent Findings

[11C]-Meta-hydroxyephedrine (HED) has provided useful information in evaluation of normal and pathological cardiovascular function. Recently, [11C]-HED PET imaging was able to predict lethal arrhythmias, sudden cardiac death (SCD), and all-cause mortality in heart failure patients with reduced ejection fraction (HFrEF). In addition, initial [11C]-HED PET imaging studies have shown the potential of this agent in elucidating the relationship between impaired cardiac sympathetic nervous system (SNS) innervation and the severity of diastolic dysfunction in HF patients with preserved ejection fraction (HFpEF) and in predicting the response to cardiac resynchronization therapy (CRT) in HFrEF patients. Longer half-life 18F-labeled presynaptic SNS tracers (e.g., [18F]-LMI1195) have been developed to facilitate clinical imaging, although no PET radiotracers that target the ANS have gained wide clinical use in the cardiovascular system. Although the use of parasympathetic nervous system radiotracers in cardiac imaging is limited, the novel tracer, [11C]-donepezil, has shown potential utility in initial studies.

Summary

Many ANS radioligands have been synthesized for PET cardiac imaging, but to date, the most clinically relevant PET tracer has been [11C]-HED. Recent studies have shown the utility of [11C]-HED in relevant clinical issues, such as in the elusive clinical syndrome of HFpEF. Conversely, tracers that target cardiac PNS innervation have been used less clinically, but novel tracers show potential utility for future work. The future application of [11C]-HED and newly designed 18F-labeled tracers for targeting the ANS hold promise for the evaluation and management of a wide range of cardiovascular diseases, including the prognostication of patients with HFpEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hall, JE. Chapter 60: The autonomic nervous system and the adrenal medulla. In: Guyton and Hall textbook of medical physiology, 13th edition. Philadelphia, PA: Saunders Elsevier. 2015:748-760.

  2. Battipaglia I, Lanza GA. Chapter 1: The Autonomic Nervous System of the Heart. In: Autonomic Innervation of the Heart. New York City: Springer Publishing. 2015:1-12.

  3. Merz CNB, Elboudwarej O, Mehta P. The autonomic nervous system and cardiovascular health and disease: a complex balancing act. JACC. 2015;3:383–5.

    Google Scholar 

  4. Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure pathophysiology and potential implications for therapy. Circulation. 2008;118:863–71.

    Article  PubMed  Google Scholar 

  5. Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90:513–57.

    Article  CAS  PubMed  Google Scholar 

  6. Esler M, Kaye D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol. 2000;35:S1–7.

    Article  CAS  PubMed  Google Scholar 

  7. Barron HV, Lesh MD. Autonomic nervous system and sudden cardiac death. J Am Coll Cardiol. 1996;27:1053–60.

    Article  CAS  PubMed  Google Scholar 

  8. Travin MI. Clinical applications of myocardial innervation imaging. Cardiol Clin. 2016;34:133–47.

    Article  PubMed  Google Scholar 

  9. Higuchi T, Schwaiger M. Imaging cardiac neuronal function and dysfunction. Curr Cardiol Rep. 2006;8:131–8.

    Article  PubMed  Google Scholar 

  10. Henneman MM, Bengel FM, van der Wall EE, Knuuti J, Bax JJ. Cardiac neuronal imaging: application in the evaluation of cardiac disease. J Nucl Cardiol. 2008;15:442–55.

    Article  PubMed  Google Scholar 

  11. Slart RH, van der Meer P, Tio RA, van Veldhuisen DJ, Elsinga PH. Chapter 11: PET imaging of myocardial β-adrenoceptors. In: Autonomic Innervation of the Heart: New York City: Springer Publishing. 2015:235-253.

  12. • Raffel DM, Chen W, Jung Y-W, Jang KS, Gu G, Cozzi NV. Radiotracers for cardiac sympathetic innervation: transport kinetics and binding affinities for the human norepinephrine transporter. Nucl Med Biol. 2013;40:331-7. This study provides a thorough comparison of the kinetics and binding affinities of novel and established SNS presynaptic PET radiotracers for the human norepinephrine transporter.

  13. Tipre DN, Fox JJ, Holt DP, et al. In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. J Nucl Med. 2008;49:1189–95.

    Article  PubMed  Google Scholar 

  14. Münch G, Nguyen NT, Nekolla S, et al. Evaluation of sympathetic nerve terminals with [11C] epinephrine and [11C] hydroxyephedrine and positron emission tomography. Circulation. 2000;101:516–23.

    Article  PubMed  Google Scholar 

  15. Raffel DM, Chen W. Binding of [3H] mazindol to cardiac norepinephrine transporters: kinetic and equilibrium studies. Naunyn Schmiedeberg’s Arch Pharmacol. 2004;370:9–16.

    Article  CAS  Google Scholar 

  16. Rosenspire KC, Haka MS, Van Dort ME, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med. 1990;31:1328–34.

    CAS  PubMed  Google Scholar 

  17. Law MP, Osman S, Davenport RJ, Cunningham VJ, Pike VW, Camici PG. Biodistribution and metabolism of [N-methyl-11 C]-m-hydroxyphedrine in the rat. Nucl Med Biol. 1997;24:417–24.

    CAS  PubMed  Google Scholar 

  18. Schwaiger M, Kalff V, Rosenspire K, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation. 1990;82:457–64.

    Article  CAS  PubMed  Google Scholar 

  19. Thackeray JT, Beanlands RS, DaSilva JN. Presence of specific 11C-meta-hydroxyephedrine retention in heart, lung, pancreas, and brown adipose tissue. J Nucl Med. 2007;48:1733–40.

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen NT, DeGrado TR, Chakraborty P, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med. 1997;38:780.

    CAS  PubMed  Google Scholar 

  21. • Bravo PE, Lautamäki R, Carter D et al. Mechanistic insights into sympathetic neuronal regeneration: multitracer molecular imaging of catecholamine handling after cardiac transplantation. Circulation: Cardiovascular Imaging 2015;8:e003507. This is the first-in-human study that assessed 11 C-hydroxyephedrine, 11 C-epinephrine, and 11 C-phenylephrine simultaneously with myocardial blood flow (13 N-ammonia) in heart transplant patients and healthy controls. As such, this study was able to provide mechanistic information on the regrowth of SNS neurons post transplant.

  22. Raffel DM, Corbett JR, del Rosario RB, Mukhopadhyay SK. Sensitivity of [11C] phenylephrine kinetics to monoamine oxidase activity in normal human heart. J Nucl Med. 1999;40:232.

    CAS  PubMed  Google Scholar 

  23. Del Rosario RB, Jung Y-W, Caraher J, Chakraborty PK, Wieland DM. Synthesis and preliminary evaluation of [11 C]-(−)-phenylepnrine as a functional heart neuronal PET agent. Nucl Med Biol. 1996;23:611–6.

    Article  PubMed  Google Scholar 

  24. Chirakal R, Coates G, Firnau G, Schrobilgen GJ, Nahmias C. Direct radiofluorination of dopamine: 18 F-labeled 6-fluorodopamine for imaging cardiac sympathetic innervation in humans using positron emission tomography. Nucl Med Biol. 1996;23:41–5.

    Article  CAS  PubMed  Google Scholar 

  25. Goldstein D, Holmes C, Stuhlmuller JE, Lenders JW, Kopin IJ. 6-[18F] Fluorodopamine positron emission tomographic scanning in the assessment of cardiac sympathoneural function—studies in normal humans. Clin Auton Res. 1997;7:17–29.

    Article  CAS  PubMed  Google Scholar 

  26. Yu M, Bozek J, Lamoy M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging. 2011;4:435–43.

    Article  PubMed  Google Scholar 

  27. Werner RA, Rischpler C, Onthank D, et al. Retention kinetics of the 18F-labeled sympathetic nerve PET tracer LMI1195: comparison with 11C-Hydroxyephedrine and 123I-MIBG. J Nucl Med. 2015;56:1429–33.

    Article  CAS  PubMed  Google Scholar 

  28. Higuchi T, Yousefi BH, Reder S, et al. Myocardial kinetics of a novel [F]-labeled sympathetic nerve PET tracer LMI1195 in the isolated perfused rabbit heart. J Am Coll Cardiol Img. 2015;8:1229–31.

    Article  Google Scholar 

  29. •• Sinusas AJ, Lazewatsky J, Brunetti J et al. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nucl Med. 2014;55:1445-51. This was the first-in-human study to assess the biodistribution and radiation dosimetry of 18 F-LMI1195, an 18 F-analog of the widely used SPECT tracer, 123 I-meta-iodobenzylguanidine (mIBG). This study showed acceptable radiation dosimetry and very favorable target-to-background ratio for cardiac imaging.

  30. Mohell N, Dicker A. The β-adrenergic radioligand [3H] CGP-12177, generally classified as an antagonist, is a thermogenic agonist in brown adipose tissue. Biochem J. 1989;261:401–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Waarde A, Meeder JG, Blanksma PK, et al. Uptake of radioligands by rat heart and lung in vivo: CGP 12177 does and CGP 26505 does not reflect binding to β-adrenoceptors. Eur J Pharmacol. 1992;222:107–12.

    Article  PubMed  Google Scholar 

  32. Delforge J, Syrota A, Lancon JP, et al. Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med. 1991;32:739–48.

    CAS  PubMed  Google Scholar 

  33. Delforge J, Mesangeau D, Dolle F, et al. In vivo quantification and parametric images of the cardiac β-adrenergic receptor density. J Nucl Med. 2002;43:215–26.

    CAS  PubMed  Google Scholar 

  34. K-i N, Kuge Y, K-i S, et al. A simplified and improved synthesis of [11 C] phosgene with iron and iron (III) oxide. Nucl Med Biol. 2002;29:345–50.

    Article  Google Scholar 

  35. Nishijima K, Kuge Y, Seki K, et al. Preparation and pharmaceutical evaluation for clinical application of high specific activity S-(−)[11C] CGP-12177, a radioligand for β-adrenoreceptors. Nucl Med Commun. 2004;25:845–9.

    Article  CAS  PubMed  Google Scholar 

  36. Momose M, Reder S, Raffel DM, et al. Evaluation of cardiac β-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J Nucl Med. 2004;45:471–7.

    CAS  PubMed  Google Scholar 

  37. Elsinga PH, Doze P, van Waarde A, et al. Imaging of β-adrenoceptors in the human thorax using (S)-[11 C] CGP12388 and positron emission tomography. Eur J Pharmacol. 2001;433:173–6.

    Article  CAS  PubMed  Google Scholar 

  38. Dhein S, van Koppen CJ, Brodde OE. Muscarinic receptors in the mammalian heart. Pharmacol Res. 2001;44:161–82.

    Article  CAS  PubMed  Google Scholar 

  39. Pauza DH, Saburkina I, Rysevaite K, et al. Neuroanatomy of the murine cardiac conduction system: a combined stereomicroscopic and fluorescence immunohistochemical study. Auton Neurosci. 2013;176:32–47.

    Article  CAS  PubMed  Google Scholar 

  40. Okamura N, Funaki Y, Tashiro M, et al. In vivo visualization of donepezil binding in the brain of patients with Alzheimer’s disease. Br J Clin Pharmacol. 2008;65:472–9.

    Article  CAS  PubMed  Google Scholar 

  41. Hiraoka K, Okamura N, Funaki Y, et al. Cholinergic deficit and response to donepezil therapy in Parkinson’s disease with dementia. Eur Neurol. 2012;68:137–43.

    Article  CAS  PubMed  Google Scholar 

  42. Gjerløff T, Fedorova T, Knudsen K et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donepezil PET. Brain 2014:awu369.

  43. •• Gjerløff T, Jakobsen S, Nahimi A et al. In vivo imaging of human acetylcholinesterase density in peripheral organs using 11C-donepezil: dosimetry, biodistribution, and kinetic analyses. J Nucl Med. 2014;55:1818-24. This was the first-in-human study to assess the biodistribution and radiation dosimetry of 11 C- donepezil, a radiotracer that binds to acetylcholinesterase, in peripheral organs including the heart and liver. Cardiac PNS presynaptic imaging has been unsuccessful to date. This study provides promising data for future cardiac PNS presynaptic imaging, including high cardiac specific binding, high cardiac uptake, and the ability to accurately quantify cardiac images without arterial blood sampling and complex modeling.

  44. Le Guludec D, Delforge J, Dollé F. Chapter 6: Imaging the parasympathetic cardiac innervation with PET. In: Autonomic Innervation of the Heart: New York City: Springer Publishing. 2015:111-135.

  45. Delforge J, Janier M, Syrota A, et al. Noninvasive quantification of muscarinic receptors in vivo with positron emission tomography in the dog heart. Circulation. 1990;82:1494–504.

    Article  CAS  PubMed  Google Scholar 

  46. Delforge J, Syrota A, Mazoyer B. Identifiability analysis and parameter identification of an in vivo ligand-receptor model from PET data. IEEE Trans Biomed Eng. 1990;37:653–61.

    Article  CAS  PubMed  Google Scholar 

  47. Delforge J, Le Guludec D, Syrota A, et al. Quantification of myocardial muscarinic receptors with PET in humans. J Nucl Med. 1993;34:981–91.

    CAS  PubMed  Google Scholar 

  48. Le Guludec D, Delforge J, Syrota A, et al. In vivo quantification of myocardial muscarinic receptors in heart transplant patients. Circulation. 1994;90:172–8.

    Article  PubMed  Google Scholar 

  49. Bucerius J, Joe AY, Schmaljohann J, et al. Feasibility of 2–deoxy–2–[18F] fluoro–D–glucose–A85380–PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo. Clin Res Cardiol. 2006;95:105–9.

    Article  CAS  PubMed  Google Scholar 

  50. Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure: results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  51. •• Fallavollita JA, Heavey BM, Luisi AJ, Jr. et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141-9. This is the first study showing the prognostic value of 11 C-hydroxyephdrine in predicting time to sudden cardiac arrest in patients with ischemic cardiomyopathy and reduced left ventricular ejection fraction.

  52. Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336:1208–16.

    Article  PubMed  Google Scholar 

  53. Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med. 2001;345:731–8.

    Article  CAS  PubMed  Google Scholar 

  54. Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla S, Reichart B, Schwaiger M. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation. 1999;99:1866–71.

    Article  CAS  PubMed  Google Scholar 

  55. Schwaiger M, Hutchins GD, Kalff V, et al. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Investig. 1991;87:1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bengel FM, Ueberfuhr P, Hesse T, et al. Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation. 2002;106:831–5.

    Article  PubMed  Google Scholar 

  57. Bengel FM, Ueberfuhr P, Schäfer D, Nekolla SG, Reichart B, Schwaiger M. Effect of diabetes mellitus on sympathetic neuronal regeneration studied in the model of transplant reinnervation. J Nucl Med. 2006;47:1413–9.

    PubMed  Google Scholar 

  58. Bengel FM, Ueberfuhr P, Ziegler SI, et al. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med. 2000;27:1650–7.

    Article  CAS  PubMed  Google Scholar 

  59. Barber MJ, Mueller TM, Henry DP, Felten S, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation. 1983;67:787–96.

    Article  CAS  PubMed  Google Scholar 

  60. Lautamaki R, Sasano T, Higuchi T, et al. Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone. J Nucl Med. 2015;56:457–63.

    Article  PubMed  Google Scholar 

  61. Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol. 1993;22:368–75.

    Article  CAS  PubMed  Google Scholar 

  62. Fricke E, Eckert S, Dongas A, et al. Myocardial sympathetic innervation in patients with symptomatic coronary artery disease: follow-up after 1 year with neurostimulation. J Nucl Med. 2008;49:1458–64.

    Article  CAS  PubMed  Google Scholar 

  63. Fallen EL, Coates G, Nahmias C, et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J. 1999;137:863–9.

    Article  CAS  PubMed  Google Scholar 

  64. Ohte N, Narita H, Iida A, et al. Cardiac β-adrenergic receptor density and myocardial systolic function in the remote noninfarcted region after prior myocardial infarction with left ventricular remodelling. Eur J Nucl Med Mol Imaging. 2012;39:1246–53.

    Article  PubMed  Google Scholar 

  65. John AS, Mongillo M, Depre C, et al. Pre-and post-synaptic sympathetic function in human hibernating myocardium. Eur J Nucl Med Mol Imaging. 2007;34:1973–80.

    Article  PubMed  Google Scholar 

  66. Spyrou N, Rosen SD, Fath-Ordoubadi F, et al. Myocardial beta-adrenoceptor density one month after acute myocardial infarction predicts left ventricular volumes at six months. J Am Coll Cardiol. 2002;40:1216–24.

    Article  CAS  PubMed  Google Scholar 

  67. Mazzadi AN, Pineau J, Costes N, et al. Muscarinic receptor upregulation in patients with myocardial infarction: a new paradigm. Circ Cardiovasc Imaging. 2009;2:365–72.

    Article  PubMed  Google Scholar 

  68. Fox K, Borer JS, Camm AJ, et al. Resting heart rate in cardiovascular disease. J Am Coll Cardiol. 2007;50:823–30.

    Article  PubMed  Google Scholar 

  69. Luisi AJ, Suzuki G, Haka MS, Toorongian SA, Canty JM, Fallavollita JA. Regional 11C-hydroxyephedrine retention in hibernating myocardium: chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med. 2005;46:1368–74.

    CAS  PubMed  Google Scholar 

  70. Fallavollita JA, Banas MD, Suzuki G, Sajjad M, Canty Jr JM. 11C-meta-hydroxyephedrine defects persist despite functional improvement in hibernating myocardium. J Nucl Cardiol. 2010;17:85–96.

    Article  PubMed  Google Scholar 

  71. Bülow H, Stahl F, Lauer B, et al. Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nucl Med Commun. 2003;24:233–9.

    Article  PubMed  Google Scholar 

  72. Haider N, Baliga RR, Chandrashekhar Y, Narula J. Adrenergic excess, hNET1 down-regulation, and compromised mIBG uptake in heart failure: poverty in the presence of plenty. J Am Coll Cardiol Img. 2010;3:71–5.

    Article  Google Scholar 

  73. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  CAS  PubMed  Google Scholar 

  74. Kaye DM, Lambert GW, Lefkovits J, Morris M, Jennings G, Esler MD. Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol. 1994;23:570–8.

    Article  CAS  PubMed  Google Scholar 

  75. Matsunari I, Aoki H, Nomura Y, et al. Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging. 2010;3:595–603.

    Article  PubMed  Google Scholar 

  76. Bengel F, Permanetter B, Ungerer M, Nekolla S, Schwaiger M. Relationship between altered sympathetic innervation, oxidative metabolism and contractile function in the cardiomyopathic human heart; a non-invasive study using positron emission tomography. Eur Heart J. 2001;22:1594–600.

    Article  CAS  PubMed  Google Scholar 

  77. Rijnierse MT, Allaart CP, de Haan S et al. Sympathetic denervation is associated with microvascular dysfunction in non-infarcted myocardium in patients with cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2015:jev013.

  78. Caldwell JH, Link JM, Levy WC, Poole JE, Stratton JR. Evidence for pre-to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med. 2008;49:234–41.

    Article  PubMed  Google Scholar 

  79. •• Aikawa T, Naya M, Tomiyama Y et al. Impairment of myocardial sympathetic innervation and its heterogeneity are associated with diastolic dysfunction in patients with heart failure and preserved ejection fraction: C11-hydroxyephedrine PET study. J Nucl Med. 2016;57:231. This is the first study showing that global 11 C-hydroxyephdrine retention index is reduced and 11 C-hydroxyephdrine uptake heterogeneity is increased in patients with heart failure and preserved ejection fraction (HFpEF).

  80. Schäfers M, Dutka D, Rhodes CG, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res. 1998;82:57–62.

    Article  PubMed  Google Scholar 

  81. Fujita W, Matsunari I, Aoki H, Nekolla SG, Kajinami K. Prediction of all-cause death using 11C-hydroxyephedrine positron emission tomography in Japanese patients with left ventricular dysfunction. Ann Nucl Med. 2016;1–7.

  82. Pietilä M, Malminiemi K, Ukkonen H, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med. 2001;28:373–6.

    Article  PubMed  Google Scholar 

  83. Tsukamoto T, Morita K, Naya M, et al. Decreased myocardial β-adrenergic receptor density in relation to increased sympathetic tone in patients with nonischemic cardiomyopathy. J Nucl Med. 2007;48:1777–82.

    Article  CAS  PubMed  Google Scholar 

  84. Naya M, Tsukamoto T, Morita K, et al. Myocardial β-adrenergic receptor density assessed by 11C-CGP12177 PET predicts improvement of cardiac function after carvedilol treatment in patients with idiopathic dilated cardiomyopathy. J Nucl Med. 2009;50:220–5.

    Article  CAS  PubMed  Google Scholar 

  85. de Jong RM, Willemsen AT, Slart RH, et al. Myocardial β-adrenoceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)-[11C] CGP12388. Eur J Nucl Med Mol Imaging. 2005;32:443–7.

    Article  PubMed  Google Scholar 

  86. Le Guludec D, Cohen-Solal A, Delforge J, Delahaye N, Syrota A, Merlet P. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. Circulation. 1997;96:3416–22.

    Article  PubMed  Google Scholar 

  87. Russo AM, Stainback RF, Bailey SR, et al. ACCF/HRS/AHA/ASE/HFSA/SCAI/SCCT/SCMR 2013 appropriate use criteria for implantable cardioverter-defibrillators and cardiac resynchronization therapy: a report of the American College of Cardiology Foundation appropriate use criteria task force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2013;61:1318–68.

    Article  PubMed  Google Scholar 

  88. Daubert C, Behar N, Martins RP, Mabo P, Leclercq C. Avoiding non-responders to cardiac resynchronization therapy: a practical guide. Eur Heart J. 2016:ehw270.

  89. Boriani G, Regoli F, Saporito D, et al. Neurohormones and inflammatory mediators in patients with heart failure undergoing cardiac resynchronization therapy: time courses and prediction of response. Peptides. 2006;27:1776–86.

    Article  CAS  PubMed  Google Scholar 

  90. •• Martignani C, Diemberger I, Nanni C et al. Cardiac resynchronization therapy and cardiac sympathetic function. Eur J Clin Invest. 2015;45:792-9. This is the first study showing that global 11 C-hydroxyephdrine uptake and 11 C-hydroxyephdrine uptake heterogeneity may be able to predict response to cardiac resynchronization therapy in patients with heart failure and reduced left ventricular ejection fraction.

  91. Capitanio S, Nanni C, Marini C, et al. Heterogeneous response of cardiac sympathetic function to cardiac resynchronization therapy in heart failure documented by 11 [C]-hydroxy-ephedrine and PET/CT. Nucl Med Biol. 2015;42:858–63.

    Article  CAS  PubMed  Google Scholar 

  92. Epstein AE, Dimarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: executive summary. Heart Rhythm. 2008;5:934–55.

    Article  PubMed  Google Scholar 

  93. Wellens HJ, Schwartz PJ, Lindemans FW, et al. Risk stratification for sudden cardiac death: current status and challenges for the future. Eur Heart J. 2014;35:1642–51.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Verrier RL, Antzelevitch C. Autonomic aspects of arrhythmogenesis: the enduring and the new. Curr Opin Cardiol. 2004;19:2–11.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sasano T, Abraham MR, Chang KC, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 2008;51:2266–75.

    Article  PubMed  Google Scholar 

  96. Rijnierse MT, Allaart CP, de Haan S, et al. Non-invasive imaging to identify susceptibility for ventricular arrhythmias in ischaemic left ventricular dysfunction. Heart. 2016;102:832–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Sinusas.

Ethics declarations

Conflict of Interest

Nabil E. Boutagy and Albert J. Sinusas declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutagy, N.E., Sinusas, A.J. Recent Advances and Clinical Applications of PET Cardiac Autonomic Nervous System Imaging. Curr Cardiol Rep 19, 33 (2017). https://doi.org/10.1007/s11886-017-0843-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0843-0

Keywords

Navigation