Skip to main content
Log in

Binding of [3H]mazindol to cardiac norepinephrine transporters: kinetic and equilibrium studies

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The norepinephrine transporter (NET) is the carrier that drives the neuronal norepinephrine uptake mechanism (uptake1) in mammalian hearts. The radioligand [3H]mazindol binds with high affinity to NET. In this study, the kinetics of [3H]mazindol binding to NET were measured using a rat heart membrane preparation. Results from these studies were used to set up saturation binding assays designed to measure cardiac NET densities (Bmax) and competitive inhibition assays designed to measure inhibitor binding affinities (KI) for NET. Saturation binding assays measured NET densities in rat, rabbit, and canine hearts. Assay reproducibility was assessed and the effect of NaCl concentration on [3H]mazindol binding to NET was studied using membranes from rat and canine hearts. Specificity of [3H]mazindol binding to NET was determined in experiments in which the neurotoxin 6-hydroxydopamine (6-OHDA) was used to selectively destroy cardiac sympathetic nerve terminals in rats. Competitive inhibition studies measured KI values for several NET inhibitors and substrates. In kinetic studies using rat heart membranes, [3H]mazindol exhibited a dissociation rate constant koff=0.0123±0.0007 min−1 and an association rate constant kon=0.0249±0.0019 nM−1min−1. In saturation binding assays, [3H]mazindol binding was monophasic and saturable in all cases. Increasing the concentration of NaCl in the assay buffer increased binding affinity significantly, while only modestly increasing Bmax. Injections of 6-OHDA in rats decreased measured cardiac NET Bmax values in a dose-dependent manner, verifying that [3H]mazindol binds specifically to NET from sympathetic nerve terminals. Competitive inhibition studies provided NET inhibitor and substrate KI values consistent with previously reported values. These studies demonstrate the high selectivity of [3H]mazindol binding for the norepinephrine transporter in membrane preparations from mammalian hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armour JA (1998) Myocardial ischaemia and the cardiac nervous system. Cardiovasc Res 41:41–54

    Article  Google Scholar 

  • Böhm M, La Rosée K, Schwinger RHG, Erdmann E (1995) Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol 25:145–153

    Google Scholar 

  • Böhm M, Castellano M, Flesch M, Maack C, Moll M, Paul M, Schiffer F, Zolk O (1998) Chamber-specific alterations of norepinephrine uptake sites in cardiac hypertrophy. Hypertension 32:831–837

    PubMed  Google Scholar 

  • Bönisch H, Harder R (1986) Binding of 3H-desipramine to the neuronal noradrenaline carrier of rat phaeochromocytoma cells (PC-12 cells). Naunyn-Schmiedebergs Arch Pharmacol 334:403–411

    PubMed  Google Scholar 

  • Chakraborty PK, Gildersleeve DL, Jewett DM, Toorongian SA, Kilbourn MR, Schwaiger M, Wieland DM (1993) High yield synthesis of high specific activity R-(−)-[11C]epinephrine for routine PET studies in humans. Nucl Med Biol 20:939–944

    Article  CAS  PubMed  Google Scholar 

  • Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

    CAS  PubMed  Google Scholar 

  • De Champlain J (1971) Degeneration and regrowth of adrenergic nerve fibers in the rat peripheral tissues after 6-hydroxydopamine. Can J Physiol Pharmacol 49:345–355

    PubMed  Google Scholar 

  • Del Rosario RB, Jung Y-W, Chakraborty PK, Sherman PS, Wieland DM (1996) Synthesis and preliminary evaluation of [C-11] phenylephrine for mapping heart neuronal function. Nucl Med Biol 23:611–616

    Article  PubMed  Google Scholar 

  • Ewing DJ (1996) Diabetic autonomic neuropathy and the heart. Diabetes Res Clin Pract 30 [Suppl]:31–36

    PubMed  Google Scholar 

  • Hulme EC, Birdsall NJM (1992) Strategy and tactics in receptor-binding studies. In: Hulme EC (ed) Receptor-ligand interactions. Oxford University Press, Oxford, pp 63–176

  • Javitch JA, Blaustein RO, Snyder SH (1984) [3H]Mazindol binding associated with neuronal dopamine and norepinephrine uptake sites. Mol Pharmacol 26:25–44

    Google Scholar 

  • Kawai H, Mohan A, Hagen J, Dong E, Armstrong J, Stevens SY, Liang CS (2000) Alterations in cardiac adrenergic terminal function and β-adrenoceptor density in pacing-induced heart failure. Am J Physiol Heart Circ Physiol 278:H1708–H1716

    CAS  PubMed  Google Scholar 

  • Kiyono Y, Iida Y, Kawashima H, Ogawa M, Tamaki N, Nishimura H, Saji H (2002a) Norepinephrine transporter density as a causative factor in alterations in MIBG myocardial uptake in NIDDM model rats. Eur J Nucl Med 29:999–1005

    Article  CAS  Google Scholar 

  • Kiyono Y, Kanegawa N, Kawashima H, Iida Y, Kinoshita T, Tamaki N, Nishimura H, Ogawa M, Saji H (2002b) Age-related changes of myocardial norepinephrine transporter density in rats: implications for differential cardiac accumulation of MIBG in aging. Nucl Med Biol 29:679–684

    Article  CAS  PubMed  Google Scholar 

  • Leineweber K, Seyfarth T, Brodde O-E (2000) Chamber-specific alterations of noradrenaline uptake (uptake1) in right ventricles of monocrotaline-treated rats. Br J Pharmacol 131:1438–1444

    CAS  PubMed  Google Scholar 

  • Liang CS, Fan THM, Sullebarger JT, Sakamoto S (1989) Decreased adrenergic neuronal uptake activity in experimental right heart failure. J Clin Invest 84:1267–1275

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mardon K, Montagne O, Elbaz N, Malek Z, Syrota A, Dubois-Randé J-L, Meignan M, Merlet P (2003) Uptake-1 carrier downregulates in parallel with the β-adrenergic receptor desensitization in rat hearts chronically exposed to high levels of circulating norepinephrine: implications for cardiac neuroimaging in human cardiomyopathies. J Nucl Med 44:1459–1466

    CAS  PubMed  Google Scholar 

  • Michael-Hepp J, Blum B, Bönisch H (1992) Characterization of the [3H]-desipramine binding site of the bovine adrenomedullary plasma membrane. Naunyn-Schmiedebergs Arch Pharmacol 346:203–207

    CAS  PubMed  Google Scholar 

  • National Research Council (1985) Guide for the care and use of laboratory animals. US Department of Health and Human Services, National Institutes of Health, Bethesda, MD

  • Packer M (1992) The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 20:248–254

    CAS  PubMed  Google Scholar 

  • Raffel DM, Wieland DM (2001) Assessment of cardiac sympathetic nerve integrity with positron emission tomography. Nucl Med Biol 28:541–559

    Article  CAS  PubMed  Google Scholar 

  • Raisman R, Sette M, Pimoule C, Briley M, Langer SZ (1982) High-affinity [3H]desipramine binding in the peripheral and central nervous system: a specific site associated with the neuronal uptake of noradrenaline. Eur J Pharmacol 78:345–351

    Article  CAS  PubMed  Google Scholar 

  • Rosenspire KC, Haka MS, Van Dort ME, Jewett DM, Gildersleeve DL, Schwaiger M, Wieland DM (1990) Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: A false transmitter agent for heart neuronal imaging. J Nucl Med 31:1328–1334

    CAS  PubMed  Google Scholar 

  • Schömig E, Korber M, Bönisch H (1988) Kinetic evidence for a common binding site for substrates and inhibitors of the neuronal noradrenaline carrier. Naunyn-Schmiedebergs Arch Pharmacol 337:626–632

    PubMed  Google Scholar 

  • Schwartz PJ (1998) The autonomic nervous system and sudden death. Eur Heart J 19 [Suppl F]:F72–F80

    Article  PubMed  Google Scholar 

  • Shite J, Qin F, Mao W, Kawai H, Stevens SY, Liang CS (2001) Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy. J Am Coll Cardiol 38:1734–1740

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  CAS  PubMed  Google Scholar 

  • Thoenen H, Tranzer JP (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedebergs Arch Pharmacol 261:271–288

    CAS  Google Scholar 

  • Ungerer M, Chlistalla A, Richardt G (1996) Upregulation of cardiac uptake-1 carrier in ischemic and nonischemic rat heart. Circ Res 78:1037–1043

    CAS  PubMed  Google Scholar 

  • Virmani R, Burke AP, Farb A (2001) Sudden cardiac death. Cardiovasc Pathol 10:275–282

    Article  CAS  PubMed  Google Scholar 

  • Wieland DM, Brown LE, Rogers WL, Worthington KC, Wu J-L, Clinthorne NH, Otto CA, Swanson DP, Beierwaltes WH (1981) Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med 22:22–31

    CAS  PubMed  Google Scholar 

  • Zipes DP (1995) Autonomic modulation of cardiac arrhythmias. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology: from cell to bedside. Saunders, Philadelphia, pp 441–453

Download references

Acknowledgments

The authors thank Dr Richard Neubig, Department of Pharmacology, University of Michigan, and Dr Kazuhiro Shiba, Advanced Science Research Center, Kanazawa University, for helpful discussions on receptor assay methodology. This work was supported by National Institutes of Health grants R29 HL59471 and R01 EB000273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Raffel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raffel, D.M., Chen, W. Binding of [3H]mazindol to cardiac norepinephrine transporters: kinetic and equilibrium studies. Naunyn-Schmiedeberg's Arch Pharmacol 370, 9–16 (2004). https://doi.org/10.1007/s00210-004-0949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0949-y

Keywords

Navigation