Skip to main content

Advertisement

Log in

Imaging cardiac neuronal function and dysfunction

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

In recent years, the importance of alterations of cardiac autonomic nerve function in the pathophysiology of heart diseases including heart failure, arrhythmia, ischemic heart disease, and diabetes has been increasingly recognized. Several radiolabeled compounds have been synthesized for noninvasive imaging, including single photon emission CT and positron emission tomography (PET). The catecholamine analogue I-123 metaiodobenzylguanidine (MIBG) is the most commonly used tracer for mapping of myocardial presynaptic sympathetic innervation on a broad clinical basis. In addition, radiolabeled catecholamines and catecholamine analogues are available for PET imaging, which allows absolute quantification and tracer kinetics modeling. Postsynaptic receptor PET imaging added new insights into mechanisms of heart disease. These advanced imaging techniques provide noninvasive, repeatable in vivo information of autonomic nerve function in the human heart and are promising for providing profound insights into molecular pathophysiology, monitoring of treatment, and determination of individual outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Fukuda N, Granzier H: Role of the giant elastic protein titin in the Frank-Starling mechanism of the heart. Curr Vasc Pharmacol 2004, 2:135–139.

    Article  PubMed  CAS  Google Scholar 

  2. Kaye D, Esler M: Sympathetic neuronal regulation of the heart in aging and heart failure. Cardiovasc Res 2005, 66:256–264.

    Article  PubMed  CAS  Google Scholar 

  3. Chatterjee K: Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol 2005, 95:8B-13B.

    Article  PubMed  CAS  Google Scholar 

  4. Yen CT, Hwang JC, Su CK, et al.: Differential actions of the medial region of caudal medulla on autonomic nerve activities. Clin Exp Pharmacol Physiol 1991, 18:743–751.

    PubMed  CAS  Google Scholar 

  5. Levy MN: Cardiac sympathetic-parasympathetic interactions. Fed Proc 1984, 43:2598–2602.

    PubMed  CAS  Google Scholar 

  6. Eisenhofer G, Kopin IJ, Goldstein DS: Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 2004, 56:331–349.

    Article  PubMed  CAS  Google Scholar 

  7. Goldstein DS, Brush JE Jr, Eisenhofer G, et al.: In vivo measurement of neuronal uptake of norepinephrine in the human heart. Circulation 1988, 78:41–48.

    PubMed  CAS  Google Scholar 

  8. Clarke DE, Jones CJ, Linley PA: Histochemical fluorescence studies on noradrenaline accumulation by Uptake 2 in the isolated rat heart. Br J Pharmacol 1969, 37:1–9.

    PubMed  CAS  Google Scholar 

  9. Hasking GJ, Esler MD, Jennings GL, et al.: Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 1986, 73:615–621.

    PubMed  CAS  Google Scholar 

  10. Hein L, Altman JD, Kobilka BK: Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature 1999, 402:181–184.

    Article  PubMed  CAS  Google Scholar 

  11. Raffel DM, Wieland DM: Assessment of cardiac sympathetic nerve integrity with positron emission tomography. Nucl Med Biol 2001, 28:541–559.

    Article  PubMed  CAS  Google Scholar 

  12. Paton WD, Vizi ES, Zar MA: The mechanism of acetylcholine release from parasympathetic nerves. J Physiol 1971, 215:819–848.

    PubMed  CAS  Google Scholar 

  13. Harvey RD, Belevych AE: Muscarinic regulation of cardiac ion channels. Br J Pharmacol 2003, 139:1074–1084.

    Article  PubMed  CAS  Google Scholar 

  14. Tseng H, Link JM, Stratton JR, et al.: Cardiac receptor physiology and its application to clinical imaging: present and future. J Nucl Cardiol 2001, 8:390–409.

    Article  PubMed  CAS  Google Scholar 

  15. Carrio I: Cardiac neurotransmission imaging. J Nucl Med 2001, 42:1062–1076.

    PubMed  CAS  Google Scholar 

  16. Langer O, Halldin C: PET and SPET tracers for mapping the cardiac nervous system. Eur J Nucl Med Mol Imaging 2002, 29:416–434.

    Article  PubMed  CAS  Google Scholar 

  17. Knuuti J, Sipola P: Is it time for cardiac innervation imaging? Q J Nucl Med Mol Imaging 2005, 49:97–105.

    PubMed  CAS  Google Scholar 

  18. Flotats A, Carrio I: Cardiac neurotransmission SPECT imaging. J Nucl Cardiol 2004, 11:587–602.

    Article  PubMed  Google Scholar 

  19. Bengel FM, Schwaiger M: Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol 2004, 11:603–616.

    Article  PubMed  Google Scholar 

  20. Wieland DM, Brown LE, Rogers WL, et al.: Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med 1981, 22:22–31.

    PubMed  CAS  Google Scholar 

  21. Patel AD, Iskandrian AE: MIBG imaging. J Nucl Cardiol 2002, 9:75–94.

    Article  PubMed  Google Scholar 

  22. Schomig A, Fischer S, Kurz T, et al.: Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic rat heart: mechanism and metabolic requirements. Circ Res 1987, 60:194–205.

    PubMed  CAS  Google Scholar 

  23. Dae MW, De Marco T, Botvinick EH, et al.: Scintigraphic assessment of MIBG uptake in globally denervated human and canine hearts--implications for clinical studies. J Nucl Med 1992, 33:1444–1450.

    PubMed  CAS  Google Scholar 

  24. Glowniak JV, Turner FE, Gray LL, et al.: Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants. J Nucl Med 1989, 30:1182–1191.

    PubMed  CAS  Google Scholar 

  25. Nishimura T, Sugishita Y, Sasaki Y: [The results of questionnaire on quantitative assessment of 123Imetaiodobenzylguanidine myocardial scintigraphy in heart failure]. Kaku Igaku 1997, 34:1139–1148.

    PubMed  CAS  Google Scholar 

  26. Melon P, Schwaiger M: Imaging of metabolism and autonomic innervation of the heart by positron emission tomography. Eur J Nucl Med 1992, 19:453–464.

    Article  PubMed  CAS  Google Scholar 

  27. Raffel DM, Corbett JR, del Rosario RB, et al.: Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons. J Nucl Med 1996, 37:1923–1931.

    PubMed  CAS  Google Scholar 

  28. Munch G, Nguyen NT, Nekolla S, et al.: Evaluation of sympathetic nerve terminals with [(11)C]epinephrine and [(11)C]hydroxyephedrine and positron emission tomography. Circulation 2000, 101:516–523.

    PubMed  CAS  Google Scholar 

  29. Del Rosario RB, Jung YW, Caraher J, et al.: Synthesis and preliminary evaluation of [11C]-(-)-phenylephrine as a functional heart neuronal PET agent. Nucl Med Biol 1996, 23:611–616.

    Article  PubMed  Google Scholar 

  30. de Jong RM, Blanksma PK, van Waarde A, et al.: Measurement of myocardial beta-adrenoceptor density in clinical studies: a role for positron emission tomography? Eur J Nucl Med Mol Imaging 2002, 29:88–97.

    Article  PubMed  CAS  Google Scholar 

  31. Law MP: Demonstration of the suitability of CGP 12177 for in vivo studies of beta-adrenoceptors. Br J Pharmacol 1993, 109:1101–1109.

    PubMed  CAS  Google Scholar 

  32. Delforge J, Mesangeau D, Dolle F, et al.: In vivo quantification and parametric images of the cardiac beta-adrenergic receptor density. J Nucl Med 2002, 43:215–226.

    PubMed  CAS  Google Scholar 

  33. Elsinga PH, van Waarde A, Jaeggi KA, et al.: Synthesis and evaluation of (S)-4-(3-(2'-[11C]isopropylamino)-2-hydroxypropoxy) -2H-benzimidazol -2-one ((S)-[11C]CGP 12388) and (S)-4-(3-((1'-[18F]-.uoroisopropyl)amino)-2-hydroxypropoxy)-2H-benzimidazol-2-one ((S)-[18F].uoro-CGP 12388) for visualization of betaadrenoceptors with positron emission tomography. J Med Chem 1997, 40:3829–3835.

    Article  PubMed  CAS  Google Scholar 

  34. Momose M, Reder S, Raffel DM, et al.: Evaluation of cardiac beta-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J Nucl Med 2004, 45:471–477.

    PubMed  CAS  Google Scholar 

  35. Doze P, Elsinga PH, van Waarde A, et al.: Quantification of beta-adrenoceptor density in the human heart with (S)-[11C]CGP 12388 and a tracer kinetic model. Eur J Nucl Med Mol Imaging 2002, 29:295–304.

    Article  PubMed  CAS  Google Scholar 

  36. DeGrado TR, Mulholland GK, Wieland DM, et al.: Evaluation of (-)[18F].uoroethoxybenzovesamicol as a new PET tracer of cholinergic neurons of the heart. Nucl Med Biol 1994, 21:189–195.

    Article  PubMed  CAS  Google Scholar 

  37. Kassiou M, Mardon K, Katsifis AG, et al.: Radiosynthesis of [123I]N-methyl-4-iododexetimide and [123I]N-methyl-4-iodolevetimide: in vitro and in vivo characterisation of binding to muscarinic receptors in the rat heart. Nucl Med Biol 1996, 23:147–153.

    Article  PubMed  CAS  Google Scholar 

  38. Syrota A, Comar D, Paillotin G, et al.: Muscarinic cholinergic receptor in the human heart evidenced under physiological conditions by positron emission tomography. Proc Natl Acad Sci U S A 1985, 82:584–588.

    Article  PubMed  CAS  Google Scholar 

  39. Valette H, Syrota A, Fuseau C: Down-regulation of cardiac muscarinic receptors induced by di-isopropylfluorophosphate. J Nucl Med 1997, 38:1430–1433.

    PubMed  CAS  Google Scholar 

  40. Lovric SS, Avbelj V, Trobec R, et al.: Sympathetic reinnervation after heart transplantation, assessed by iodine-123 metaiodobenzylguanidine imaging, and heart rate variability. Eur J Cardiothorac Surg 2004, 26:736–741.

    Article  PubMed  Google Scholar 

  41. Estorch M, Camprecios M, Flotats A, et al.: Sympathetic reinnervation of cardiac allografts evaluated by 123IMIBG imaging. J Nucl Med 1999, 40:911–916.

    PubMed  CAS  Google Scholar 

  42. Bengel FM, Ueberfuhr P, Hesse T, et al.: Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation 2002, 106:831–835.

    Article  PubMed  Google Scholar 

  43. Bengel FM, Ueberfuhr P, Ziegler SI, et al.: Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation 1999, 99:1866–1871.

    PubMed  CAS  Google Scholar 

  44. Schwaiger M, Hutchins GD, Kalff V, et al.: Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Invest 1991, 87:1681–1690.

    Article  PubMed  CAS  Google Scholar 

  45. Bengel FM, Ueberfuhr P, Schiepel N, et al.: Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 2001, 345:731–738.

    Article  PubMed  CAS  Google Scholar 

  46. Bengel FM, Ueberfuhr P, Ziegler SI, et al.: Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med 2000, 27:1650–1657.

    Article  PubMed  CAS  Google Scholar 

  47. Di Carli MF, Tobes MC, Mangner T, et al.: Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997, 336:1208–1215.

    Article  PubMed  Google Scholar 

  48. Stevens MJ, Raffel DM, Allman KC, et al.: Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation 1998, 98:961–968.

    PubMed  CAS  Google Scholar 

  49. Hattori N, Tamaki N, Hayashi T, et al.: Regional abnormality of iodine-123-MIBG in diabetic hearts. J Nucl Med 1996, 37:1985–1990.

    PubMed  CAS  Google Scholar 

  50. Kiyono Y, Kajiyama S, Fujiwara H, et al.: Influence of the polyol pathway on norepinephrine transporter reduction in diabetic cardiac sympathetic nerves: implications for heterogeneous accumulation of MIBG. Eur J Nucl Med Mol Imaging 2005, 32:438–442.

    Article  PubMed  Google Scholar 

  51. Di Carli MF, Bianco-Batlles D, Landa ME, et al.: Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999, 100:813–819.

    PubMed  Google Scholar 

  52. Schwaiger M, Guibourg H, Rosenspire K, et al.: Effect of regional myocardial ischemia on sympathetic nervous system as assessed by fluorine-18-metaraminol. J Nucl Med 1990, 31:1352–1357.

    PubMed  CAS  Google Scholar 

  53. Nakajima K, Shuke N, Nitta Y, et al.: Comparison of 99Tcm-pyrophosphate, 201T1 perfusion, 123I-labelled methyl-branched fatty acid and sympathetic imaging in acute coronary syndrome. Nucl Med Commun 1995, 16:494–503.

    Article  PubMed  CAS  Google Scholar 

  54. Tomoda H, Yoshioka K, Shiina Y, et al.: Regional sympathetic denervation detected by iodine 123 metaiodobenzylguanidine in non-Q-wave myocardial infarction and unstable angina. Am Heart J 1994, 128:452–458.

    Article  PubMed  CAS  Google Scholar 

  55. Minardo JD, Tuli MM, Mock BH, et al.: Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 1988, 78:1008–1019.

    PubMed  CAS  Google Scholar 

  56. Matsunari I, Schricke U, Bengel FM, et al.: Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 2000, 101:2579–2585.

    PubMed  CAS  Google Scholar 

  57. Kasama S, Toyama T, Kumakura H, et al.: Effects of nicorandil on cardiac sympathetic nerve activity after reperfusion therapy in patients with first anterior acute myocardial infarction. Eur J Nucl Med Mol Imaging 2005, 32:322–328.

    Article  PubMed  CAS  Google Scholar 

  58. Ungerer M, Weig HJ, Kubert S, et al.: Regional pre- and postsynaptic sympathetic system in the failing human heart--regulation of beta ARK-1. Eur J Heart Fail 2000, 2:23–31.

    Article  PubMed  CAS  Google Scholar 

  59. Ungerer M, Hartmann F, Karoglan M, et al.: Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation 1998, 97:174–180.

    PubMed  CAS  Google Scholar 

  60. Merlet P, Valette H, Dubois-Rande JL, et al.: Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992, 33:471–477.

    PubMed  CAS  Google Scholar 

  61. Kyuma M, Nakata T, Hashimoto A, et al.: Incremental prognostic implications of brain natriuretic peptide, cardiac sympathetic nerve innervation, and noncardiac disorders in patients with heart failure. J Nucl Med 2004, 45:155–163.

    PubMed  CAS  Google Scholar 

  62. Nakata T, Wakabayashi T, Kyuma M, et al.: Cardiac metaiodobenzylguanidine activity can predict the long-term efficacy of angiotensin-converting enzyme inhibitors and/or beta-adrenoceptor blockers in patients with heart failure. Eur J Nucl Med Mol Imaging 2005, 32:186–194. This study demonstrated that the reduction of mortality risk with medical therapy in heart failure patients was associated with the severity of impairment of myocardial MIBG uptake.

    Article  PubMed  CAS  Google Scholar 

  63. Zipes DP, Wellens HJ: Sudden cardiac death. Circulation 1998, 98:2334–2351.

    PubMed  CAS  Google Scholar 

  64. Tomaselli GF, Zipes DP: What causes sudden death in heart failure? Circ Res 2004, 95:754–763.

    Article  PubMed  CAS  Google Scholar 

  65. Bristow MR, Saxon LA, Boehmer J, et al.: Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004, 350:2140–2150.

    Article  PubMed  CAS  Google Scholar 

  66. Corsello A: An implantable cardioverter-defibrillator but not amiodarone reduced risk for death in congestive heart failure. ACP J Club 2005, 143:6.

    PubMed  Google Scholar 

  67. Arora R, Ferrick KJ, Nakata T, et al.: I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 2003, 10:121–131. This study demonstrated that a combination of cardiac sympathetic nerve imaging and heart rate variability analysis may helps to select appropriate patients for an implantable defibillator therapy.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schwaiger MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, T., Schwaiger, M. Imaging cardiac neuronal function and dysfunction. Curr Cardiol Rep 8, 131–138 (2006). https://doi.org/10.1007/s11886-006-0024-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-006-0024-z

Keywords

Navigation