Skip to main content

Advertisement

Log in

Feasibility of 2–deoxy–2–[18F]fluoro–D–glucose– A85380–PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo

  • ORIGINAL PAPER
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

An Erratum to this article was published on 19 January 2006

Summary

Nicotinic acetylcholine receptors mediate the parasympathetic autonomic control of cardiac function. Aim of this study was the assessment of cardiac nicotinic acetylcholine receptor distribution with a novel (α4β2) nicotinic acetylcholine receptor PET ligand (2–deoxy–2– [18F]fluoro–D–glucose–A85380) in humans. Five healthy volunteers without cardiac disease and six patients with either Parkinson's disease or multiple system atrophy without additional overt cardiac disease were evaluated with 2–deoxy–2–[18F]fluoro–D–glucose–A85380 PET–imaging to assess the cardiac parasympathetic innervation and the putative impact of both disorders. 2–deoxy–2– [18F]fluoro–D–glucose–A85380 whole body PET–scans were performed on a Siemens PET/CT biographTM 75.4 min±6.7 after i.v. injection of 371.2±58.1 MBq. Average count rate density of left ventricle ROI's and a standard ROI in the right lung were measured within three consecutive slices of 10.0 mm thickness. Heart–to–lung ratios were calculated in each volunteer and patient.

Tracer uptake in the left ventricle could be measured in all of the five volunteers and the six patients. Heart–to–lung ratios in the volunteer group were not different from patients suffering from Parkinson's disease or MSA (3.2 ± 0.5 vs 3.2 ± 0.8 and 2.96±0.7, mean ± SD), respectively.

Human cardiac nicotinic acetylcholine receptors can be visualized and measured by 2–deoxy–2– [18F]fluoro–D–glucose–A85380 PET scans both in cardiac–healthy subjects and patients suffering from Parkinson's disease or multiple system atrophy. The heart– as well as the lung–tracer uptake was almost constant throughout all subjects leading to a good targetto– background ratio. These first results suggest no impact of either PD or MSA on cardiac nicotinic acetylcholine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bibevski S, Zhou Y, McIntosh JM, Zigmond RE, Dunlap ME (2000) Functional nicotinic acetylcholine receptors that mediate ganglionic transmission in cardiac parasympathetic neurons. J Neurosci 20:5076–5082

    PubMed  CAS  Google Scholar 

  2. Böhm M, Maack C, Wehrlen–Grandjean M, Erdmann E, on behalf of the CIBS II Investigators (2003) Effect of bisoprolol on perioperative complications in chronic heart failure after surgery (Cardic Insufficiency Bisoprolol Study II (CIBIS II)). Z Kardiol 92:668–676

    Article  PubMed  Google Scholar 

  3. Buisson B, Bertrand D (1998) Openchannel blockers at the human alpha4beta2 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 53:555–563

    PubMed  CAS  Google Scholar 

  4. Druschky A, Hilz MJ, Platsch G et al (2000) Differentiation of Parkinson’s disease and multiple system atrophy in early disease stages by means of I– 123–MIBG–SPECT. J Neurol Sci 175:3– 12

    Article  PubMed  CAS  Google Scholar 

  5. Fee JD, Randall WC, Wurster RD, Ardell JL (1987) Selective ganglionic blockade of vagal inputs to sinoatrial and/or atrioventricular regions. J Pharmacol Exp Ther 242:1006–1012

    PubMed  CAS  Google Scholar 

  6. Garlichs C, Daniel WG (2000) New milestones in the therapy of chronic heart failure with beta blockers. Z Kardiol 89:236–238

    Article  PubMed  CAS  Google Scholar 

  7. Gilman S, Low P, Quinn N et al (1998) Consensus statement on the diagnosis of multiple system atrophy. Clin Auton Res 8:359–362

    Article  PubMed  CAS  Google Scholar 

  8. Goldstein DS (2003) Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Lancet Neurol 2:669–676

    Article  PubMed  Google Scholar 

  9. Hoppe UC, Erdmann E (2001) Guidelines for the treatment of chronic heart failure. Issued by the Executive Committee of the German Society of Cardiology – Heart and Circulation Research, compiled on behalf of the Commission of Clinical Cardiology in cooperation with Pharmaceutic Commission of the Physicians’ Association. Z Kardiol 90:218–237

    Article  PubMed  CAS  Google Scholar 

  10. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico–pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    PubMed  CAS  Google Scholar 

  11. Huonker M, Keul J (2001) Value of training–induced effects on arterial vascular system and skeletal muscles in therapy of NYHA II/III heart failure. Z Kardiol 90:813–823; Erratum in Z Kardiol (2001) 90:983

    Article  PubMed  CAS  Google Scholar 

  12. Huth C, Friedl A, Klein H, Auricchio A (2001) Pacing therapies for congestive heart failure considering the results of the PATH–CHF study. Z Kardiol 90 (Suppl 1):10–15

    Article  PubMed  Google Scholar 

  13. Kimes AS, Horti AG, London ED et al (2003) 2–[18F]F–A–85380: PET imaging of brain nicotinic acetylcholine receptors and whole body distribution in humans. FASEB J 17:1331– 1333

    PubMed  CAS  Google Scholar 

  14. Listerud M, Brussaard AB, Devay P, Coleman DR, Role LW (1991) Functional contribution of neuronal AchR subunits revealed by anti–sense oligonucleotides. Science [Erratum (1992) 255:12] 254:1518–1521

    PubMed  CAS  Google Scholar 

  15. McGehee DS, Role LW (1995) Physiological diversity of nicotonic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57:521–546

    Article  PubMed  CAS  Google Scholar 

  16. Miller DK, Wong EH, Chesnut MD, Dwoskin LP (2002) Reboxetine: functional inhibition of monoamine transporters and nicotinic acetylcholine receptors. J Pharmacol Exp Ther 302:687–695

    Article  PubMed  CAS  Google Scholar 

  17. Nechwatal RM, Duck C, Gruber G (2002) Physical training as interval or continuous training in chronic heart failure for improving functional capacity, hemodynamics and quality of life – a controlled study. Z Kardiol 91:328–337

    Article  PubMed  CAS  Google Scholar 

  18. Patrick J, Sequela P, Vernino S, Amador M, Leutje C, Dani JA (1993) Functional diversity of neuronal nicotinic acetycholine receptors. Prog Brain Res 98:113–120

    PubMed  CAS  Google Scholar 

  19. Poth K, Nutter TJ, Cuevas J, Parker MJ, Adams DJ, Luetje CW (1997) Heterogeneity of nicotinic receptor class and subunit mRNA expression among individual parasympathetic neurons from rat intracardiac ganglia. J Neurosci 17:586–596

    PubMed  CAS  Google Scholar 

  20. Quik M, Bordia T, Okihara M et al (2003) L–DOPA treatment modulates nicotinic receptors in monkey striatum. Mol Pharmacol 64:619–628

    Article  PubMed  CAS  Google Scholar 

  21. Reinhardt MJ, Jungling FD, Krause TM, Braune S (2000) Scintigraphic differentation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine–123 MIBG uptake. Eur J Nucl Med 27:595–600

    Article  PubMed  CAS  Google Scholar 

  22. Richardt G, Hartmann F, Slotty C, Katus HA (1998) Kardiale Sympathikusaktivität bei der ischämischen Herzinsuffizienz. Z Kardiol 87 (suppl 2):33–36

    Article  PubMed  Google Scholar 

  23. Schmaljohann J, Minnerop M, Karwath P et al (2004) Imaging of central nAChReceptors with 2–[18F]FA85380: optimized synthesis and in vitro evaluation in Alzheimer’s disease. Appl Rad Iso 61:1235–1240

    Article  CAS  Google Scholar 

  24. Schmitt C (2000) Heart failure and sudden death: pharmacological and nonpharmacological treatment possibilities from the viewpoint of the rhythmologist. Z Kardiol 89 (suppl 7):55–59

    Article  PubMed  Google Scholar 

  25. Schnabel P, Mies F, Böhm M (1999) Hormone therapy in heart failure: growth hormone and insulin–like growth factor I. Z Kardiol 88:1–9

    Article  PubMed  CAS  Google Scholar 

  26. Schrader N, Erbel R, Wittlich N et al (1998) Hemodynamic effects of a single intravenous administration of prostaglandin E1 in a patient sample with chronic NYHA–stage II/III heart failure. Z Kardiol 87:683–690

    Article  PubMed  CAS  Google Scholar 

  27. Takatsu H, Nagashima K, Murase M et al (2000) Differentiating Parkinson’s disease from multiple–system atrophy by measuring cardiac iodine– 123 metaiodobenzylguanidine accumulation. JAMA 41:71–77

    CAS  Google Scholar 

  28. Trappe HJ, Meine M, Pfitzner P, Voigt B, Weismüller P (2001) Current aspects of defibrillator therapy in congestive heart failure. Z Kardiol 90 (suppl 1):28–34

    Article  PubMed  Google Scholar 

  29. Valette H, Bottlaender M, Dolle F et al (1999) Imaging central nicotinic acetycholine receptors in baboons with [18F]fluoro–A–85380. J Nucl Med 40:1374–1380

    PubMed  CAS  Google Scholar 

  30. Vernallis AB, Conroy WG, Berg DK (1993) Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron 10:451–464

    Article  PubMed  CAS  Google Scholar 

  31. Voss B, Lange R (2001) Dynamic Cardiomyoplasty: evaluation of an alternative procedure in the treatment of terminal heart failure: Z Kardiol 90 (suppl 1):22–27

    Article  PubMed  Google Scholar 

  32. Weber T, Kirchgatter A, Auer J, Mayr H, Maurer E, Elber B (2000) Physical activity and training in heart failure. Z Kardiol 89:227–235

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bucerius.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00392-006-0397-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucerius, J., Joe, A.Y., Schmaljohann, J. et al. Feasibility of 2–deoxy–2–[18F]fluoro–D–glucose– A85380–PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo. Clin Res Cardiol 95, 105–109 (2006). https://doi.org/10.1007/s00392-006-0342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-006-0342-6

Key words

Navigation