Skip to main content
Log in

A critical fractional choquard problem involving a singular nonlinearity and a radon measure

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

This article concerns about the existence of a positive SOLA (Solutions Obtained as Limits of Approximations) for the following singular critical Choquard problem involving fractional power of Laplacian and a critical Hardy potential.

$$\begin{aligned} \begin{aligned} (-\Delta )^su-\alpha \frac{u}{|x|^{2s}}&=\lambda u+ u^{-\gamma }+\beta \left( \int _{\Omega }\frac{u^{2_b^*}(y)}{|x-y|^b}dy\right) u^{2_b^*-1}+\mu ~\text {in}~\Omega ,\\ u&>0~\text {in}~\Omega ,\\ u&= 0~\text {in}~\mathbb {R}^N{\setminus }\Omega . \end{aligned} \end{aligned}$$
(0.1)

Here, \(\Omega \) is a bounded domain of \(\mathbb {R}^N\), \(s\in (0,1)\), \(\alpha ,\lambda \) and \(\beta \) are positive real parameters, \(N>2s\), \(\gamma \in (0,1)\), \(0<b<\min \{N,4s\}\), \(2_b^*=\frac{2N-b}{N-2s}\) is the critical exponent in the sense of Hardy–Littlewood–Sobolev inequality and \(\mu \) is a bounded Radon measure in \(\Omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Bentifour, R.: Caffarelli–Kohn–Nirenberg type inequalities of fractional order and applications. J. Funct. Anal. 272, 3998–4029 (2017)

    Article  MathSciNet  Google Scholar 

  2. Adimurthi, Giacomoni J: Multiplicity of positive solutions for a singular and critical elliptic problem in \({\mathbb{R}}^2\). Commun. Contemp. Math. 8(5), 621–656 (2006)

    Article  MathSciNet  Google Scholar 

  3. Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Notices Am. Math. Soc. 51(11), 1336–1347 (2004)

    MATH  Google Scholar 

  4. Barrios, B., Medina, M., Peral, I.: Some remarks on the solvability of nonlocal elliptic problems with the Hardy potential, Commun. Contemp. Math., 16, 1350046, 29 pp, (2014)

  5. Boccardo, L., Gallouet, T., Orsina, L.: Existence and uniqueness of entropy solutions for nonlinear elliptic equations involving measure data. Ann. Inst. H. Poincaré Anal. Non Lineaire 13, 539–551 (1996)

    Article  MathSciNet  Google Scholar 

  6. Boccardo, L., Orsina, L.: Semilinear elliptic equations with singular nonlinearities. Calc. Var. 37, 363–380 (2010)

    Article  MathSciNet  Google Scholar 

  7. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MathSciNet  Google Scholar 

  8. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–90 (1983)

    Article  MathSciNet  Google Scholar 

  9. Buffoni, B., Jeanjean, L., Stuart, C.A.: Existence of a nontrivial solution to a strongly indefinite semilinear equation. Proc. Am. Math. Soc. 119(1), 179–186 (1993)

    Article  MathSciNet  Google Scholar 

  10. Canino, A., Montoro, L., Sciunzi, B., Squassina, M.: Nonlocal problems with singular nonlinearity, Bull. Sci. math. (2017)

  11. Chen, Y.H., Liu, C.: Ground state solutions for non-autonomous fractional Choquard equations. Nonlinearity 29, 1827–1842 (2016)

    Article  MathSciNet  Google Scholar 

  12. Daoues, A., Hammami, A., Saoudi, K.: Multiple positive solutions for a nonlocal PDE with critical Sobolev–Hardy and singular nonlinearities via perturbation method. Fract. Calc. Appl. Anal. 23(3), 837–860 (2020)

    Article  MathSciNet  Google Scholar 

  13. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  14. Fall, M. M.: Semilinear elliptic equations for the fractional Laplacian with Hardy potential, arXiv:1109.5530v4 [math.AP] (24 Oct 2012)

  15. Fiscella, A., Pucci, P.: On certain nonlocal Hardy–Sobolev critical elliptic Dirichlet problems. Adv. Differ. Equ. 21(5–6), 571–599 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Gao, F., Yang, M.: On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation. Sci. China Math. 61, 1219–1242 (2018)

    Article  MathSciNet  Google Scholar 

  17. Ghanmi, A., Saoudi, K.: The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator. Fract. Differ. Calc. 6(2), 201–217 (2016)

    Article  MathSciNet  Google Scholar 

  18. Ghosh, S., Choudhuri, D., Giri, R.K.: Singular nonlocal problem involving measure data. Bull. Braz. Math. Soc. 50(1), 187–209 (2018)

    Article  MathSciNet  Google Scholar 

  19. Giacomoni, J., Mukherjee, T., Sreenadh, K.: Positive solutions of fractional elliptic equation with critical and singular nonlinearity. Adv. Nonlinear Anal. 6(3), 327–354 (2017)

    Article  MathSciNet  Google Scholar 

  20. Giacomoni, J., Mukherjee, T., Sreenadh, K.: Doubly nonlocal system with Hardy–Littlewood–Sobolev critical nonlinearity. J. Math. Anal. Appl. 467, 638–672 (2018)

    Article  MathSciNet  Google Scholar 

  21. Giacomoni, J., Goel, D., Sreenadh, K.: Singular doubly nonlocal elliptic problems with Choquard type critical growth nonlinearities, arXiv:2002.02937v1 [math.AP] (7 Feb 2020)

  22. Haitao, Y.: Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem. J. Differ. Equ. 189, 487–512 (2003)

    Article  MathSciNet  Google Scholar 

  23. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Commun. Math. Phys. 337, 1317–1368 (2015)

    Article  MathSciNet  Google Scholar 

  24. Lazer, A.C., McKenna, P.J.: On a singular nonlinear elliptic boundary-value problem. Proc. Am. Math. Soc. 111(3), 721–730 (1991)

    Article  MathSciNet  Google Scholar 

  25. Lieb, E., Loss, M.:“Analysis”, Graduate Studies in Mathematics, AMS, Providence, Rhode island, (2001)

  26. Lü, D., Xu, G.: On nonlinear fractional Schrödinger equations with Hartree-type nonlinearity. Appl. Anal. 97(2), 255–273 (2018)

    Article  MathSciNet  Google Scholar 

  27. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  28. Panda, A., Ghosh, S., Choudhuri, D.: Elliptic partial differential equation involving a singularity and a radon measure. J. Indian Math. Soc. 86(1–2), 95–117 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Panda, A., Choudhuri, D., Giri, R.K.: Existence of positive solutions for a singular elliptic problem with critical exponent and measure data. To appear in Rocky Mountain J. Math. https://projecteuclid.org/euclid.rmjm/1608865229

  30. Pekar, S.: Untersuchung uber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  31. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    Article  MathSciNet  Google Scholar 

  32. Shieh, T.T., Spector, D.: On a new class of fractional partial differential equations. Adv. Calc. Var. 8(4), 321–336 (2015)

    Article  MathSciNet  Google Scholar 

  33. Saoudi, K.: A critical fractional elliptic equation with singular nonlinearities. Fract. Calc. Appl. Anal. 20(6), 1507–1530 (2017)

    Article  MathSciNet  Google Scholar 

  34. Saoudi, K., Ghosh, S., Choudhuri, D.: Multiplicity and Hölder regularity of solutions for a nonlocal elliptic PDE involving singularity. J. Math. Phys. 60, 101509 (2019)

    Article  MathSciNet  Google Scholar 

  35. Sun, Y., Zhang, D.: The role of the power 3 for elliptic equations with negative exponents. Calc. Var. 49, 909–922 (2014)

    Article  MathSciNet  Google Scholar 

  36. Tang, X., Chen, S.: Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions. Adv. Nonlinear Anal. 9(1), 413–437 (2020)

    Article  MathSciNet  Google Scholar 

  37. Wang, Y., Yang, Y.: Bifurcation results for the critical Choquard problem involving fractional p-Laplacian operator. Bound. Value Probl. 2018, 132 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author Akasmika Panda thanks the financial assistantship received from the Ministry of Human Resource Development (M.H.R.D.), Govt. of India. Both the authors also acknowledge the facilities received from the Department of mathematics, National Institute of Technology Rourkela. All the authors thank the anonymous referee(s) for their constructive remarks and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Saoudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, A., Choudhuri, D. & Saoudi, K. A critical fractional choquard problem involving a singular nonlinearity and a radon measure. J. Pseudo-Differ. Oper. Appl. 12, 22 (2021). https://doi.org/10.1007/s11868-021-00382-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-021-00382-2

Keywords

Mathematics Subject Classification

Navigation