Skip to main content
Log in

Existence and multiplicity of normalized solutions for a class of fractional Choquard equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the existence and multiplicity of solutions with a prescribed L2-norm for a class of nonlinear fractional Choquard equations in ℝN:

$${( - \Delta )^s}u - \lambda u = ({\kappa _a}*|u{|^{p - {2_u}}})$$

where N ⩾ 3, s ∈ (0, 1), α ∈ (0, N), \(p \in (max\{ 1 + \frac{{a + 2s}}{N},2\} \frac{{N + a}}{{N - 2s}})and{\kappa _a}(x) = |x{|^{a - N}}\). To get such solutions, we look for critical points of the energy functional

$$I(u) = \frac{1}{2}{\int_{{R^N}} {|{{( - \Delta )}^{\frac{s}{2}}}u|} ^2} - \frac{1}{{2p}}\int_{{R^N}} {({\kappa _a}*|u{|^p})} |u{|^p}$$

on the constraints

$$S(c)\{ u \in {H^S}({R^N}):||u||_{{L^2}({R^N})}^2 = c\} ,c > 0.$$

For the value \(p \in (max\{ 1 + \frac{{a + 2s}}{N},2\} ,\frac{{N + a}}{{N - 2s}})\) considered, the functional I is unbounded from below on S(c). By using the constrained minimization method on a suitable submanifold of S(c), we prove that for any c > 0, I has a critical point on S(c) with the least energy among all critical points of I restricted on S(c). After that, we describe a limiting behavior of the constrained critical point as c vanishes and tends to infinity. Moreover, by using a minimax procedure, we prove that for any c > 0, there are infinitely many radial critical points of I restricted on S(c).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badiale M, Serra E. Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach. London: Springer, 2011

    Book  Google Scholar 

  2. Baernstein A. A unified approach to symmetrization. In: Partial Differential Equations of Elliptic Type. Symposia Mathematica, vol. 35. Cambridge: Cambridge University Press, 1994, 47–91

    MATH  Google Scholar 

  3. Bartsch T, de Valeriola S. Normalized solutions of nonlinear Schrödinger equations. Arch Math (Basel), 2013, 100: 75–83

    Article  MathSciNet  Google Scholar 

  4. Bartsch T, Jeanjean L, Soave N. Normalized solutions for a system of coupled cubic Schrödinger equations on R3. J Math Pures Appl (9), 2016, 106: 583–614

    Article  MathSciNet  Google Scholar 

  5. Bartsch T, Soave N. A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J Funct Anal, 2017, 272: 4998–5037

    Article  MathSciNet  Google Scholar 

  6. Bellazzini J, Jeanjean L. On dipolar quantum gases in the unstable regim. SIAM J Math Anal, 2016, 48: 2028–2058

    Article  MathSciNet  Google Scholar 

  7. Bellazzini J, Jeanjean L, Luo T-J. Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations. Proc Lond Math Soc (3), 2013, 107: 303–339

    Article  MathSciNet  Google Scholar 

  8. Bellazzini J, Siciliano G. Stable standing waves for a class of nonlinear Schrödinger-Poisson equations. Z Angew Math Phys, 2011, 62: 267–280

    Article  MathSciNet  Google Scholar 

  9. Bellazzini J, Siciliano G. Scaling properties of functionals and existence of constrained minimizers. J Funct Anal, 2011, 261: 2486–2507

    Article  MathSciNet  Google Scholar 

  10. Berestycki H, Lions P L. Nonlinear scalar field equations, II: existence of infinitely many solutions. Arch Ration Mech Anal, 1983, 82: 347–375

    Article  MathSciNet  Google Scholar 

  11. Chang K C. Methods in Nonlinear Analysis. Berlin-Heidelberg: Springer, 2003

    Google Scholar 

  12. d’Avenia P, Siciliano G, Squassina M. On fractional Choquard equations. Math Models Methods Appl Sci, 2015, 25: 1447–1476

    Article  MathSciNet  Google Scholar 

  13. Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 512–573

    Article  MathSciNet  Google Scholar 

  14. Frank R, Lenzmann E. On ground states for the L2-critical boson star equation. ArXiv:0910.2721, 2009

    Google Scholar 

  15. Frölich J, Gustafson S, Jonsson B L G, et al. Solitary wave dynamics in an external potential. Comm Math Phys, 2004, 250: 613–642

    Article  MathSciNet  Google Scholar 

  16. Frölich J, Jonsson B L G, Lenzmann E. Boson stars as solitary waves. Comm Math Phys, 2007, 274: 1–30

    Article  MathSciNet  Google Scholar 

  17. He Y, Li G B. Standing waves for a class of Kirchhoff type problems in R3 involving critical Sobolev exponents. Calc Var Partial Differential Equations, 2015, 54: 3067–3106

    Article  MathSciNet  Google Scholar 

  18. Jeanjean L. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal, 1997, 28: 1633–1659

    Article  MathSciNet  Google Scholar 

  19. Jeanjean L, Luo T-J, Wang Z-Q. Multiple normalized solutions for quasi-linear Schrödinger equations. J Differential Equations, 2015, 259: 3894–3928

    Article  MathSciNet  Google Scholar 

  20. Lenzmann E. Uniqueness of ground states for pseudorelativistic Hartree equations. Anal PDE, 2009, 2: 1–27

    Article  MathSciNet  Google Scholar 

  21. Li G B, Ye H Y. Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3. J Differential Equations, 2014, 257: 566–600

    Article  MathSciNet  Google Scholar 

  22. Li G B, Ye H Y. The existence of positive solutions with prescribed L2 norm for nonlinear Choquard equations. J Math Phys, 2015, 55: 121501

    Article  Google Scholar 

  23. Lieb E H. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud Appl Math, 1977, 57: 93–105

    Article  MathSciNet  Google Scholar 

  24. Lieb E H, Loss M. Analysis, 2nd ed. Graduate Studies in Mathematics. Providence: Amer Math Soc, 2001

    MATH  Google Scholar 

  25. Luo T-J. Multiplicity of normalized solutions for a class of nonlinear Schrödinger-Poisson-Slater equations. J Math Anal Appl, 2014, 416: 195–204

    Article  MathSciNet  Google Scholar 

  26. Moroz V, Schaftingen J V. Groundstates of nonlinear Choquard equations: Existence, qualitative properties, and decay estimates. J Funct Anal, 2013, 265: 153–184

    Article  MathSciNet  Google Scholar 

  27. Moroz V, Schaftingen J V. Semi-classical states for the Choquard equations. Calc Var Partial Differential Equations, 2015, 52: 199–235

    Article  MathSciNet  Google Scholar 

  28. Pekar S I. Untersuchungen über die Elektronen Theorie der Kristalle. Berlin: Akademie-Verlag, 1954

    MATH  Google Scholar 

  29. Ruiz D. The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237: 655–674

    Article  MathSciNet  Google Scholar 

  30. Shen Z F, Gao F S, Yang M B. Ground states for nonlinear fractional Choquard equations with general nonlinearities. Math Methods Appl Sci, 2016, 39: 4082–4098

    Article  MathSciNet  Google Scholar 

  31. Struwe M. Variational Methods, 3rd ed. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Berlin: Springer-Verlag, 1996

    Book  Google Scholar 

  32. Stuart C A. Bifurcation for variational problems when the linearization has no eigenvalues. J Funct Anal, 1980, 38: 169–187

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11371159 and 11771166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongbao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Luo, X. Existence and multiplicity of normalized solutions for a class of fractional Choquard equations. Sci. China Math. 63, 539–558 (2020). https://doi.org/10.1007/s11425-017-9287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9287-6

Keywords

MSC(2010)

Navigation