Skip to main content
Log in

Multiple solutions for nonhomogeneous Choquard equation involving Hardy–Littlewood–Sobolev critical exponent

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the following critical nonhomogeneous Choquard equation

$$\begin{aligned} -\Delta u =\left( \mathop {\int }\limits _{\Omega }\frac{|u(y)|^{2_{\mu }^{*}}}{|x-y|^{\mu }}\hbox {d}y\right) |u|^{2_{\mu }^{*}-2}u+\lambda u+f(x) \quad \hbox {in}\quad \Omega , \end{aligned}$$

where \(\Omega \) is a smooth bounded domain of \(\mathbb {R}^N\), 0 in interior of \(\Omega \), \(\lambda \in \mathbb {R}\), \(N\ge 7\), \(0<\mu <N\), \(2_{\mu }^{*}=(2N-\mu )/(N-2)\) is the upper critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality, and f(x) is a given function. Using variational methods, we obtain the existence of multiple solutions for the above problem when \(0<\lambda <\lambda _{1}\), where \(\lambda _{1}\) is the first eigenvalue of \(-\Delta \) in \(H_{0}^{1}(\Omega )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alves, C.O., Cassani, D., Tarsi, C., Yang, M.: Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \(\mathbb{R}^2\). J. Differ. Equ. 261, 1933–1972 (2016)

    Article  MATH  Google Scholar 

  2. Alves, C.O., Nóbrega, A.B., Yang, M.: Multi-bump solutions for Choquard equation with deepening potential well. Calc. Var. Partial Differ. Equ. 55, 28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, C.O., Yang, M.: Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method. Proc. R. Soc. Edinb. Sect. A 146, 23–58 (2016)

    Article  MATH  Google Scholar 

  4. Alves, C.O., Yang, M.: Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257, 4133–4164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buffoni, B., Jeanjean, L., Stuart, C.A.: Existence of a nontrivial solution to a strongly indefinite semilinear equation. Proc. Am. Math. Soc. 119, 179–186 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brézis, H., Nirenberg, L.: A Minimization Problem with Critical Exponent and Non-zero Data, Symmetry in Nature. Scuola Norm. Sup., Pisa (1989)

    MATH  Google Scholar 

  8. Clapp, M., Salazar, D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407, 1–15 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cingolani, S., Clapp, M., Secchi, S.: Intertwining semiclassical solutions to a Schrödinger–Newton system. Discrete Contin. Dyn. Syst. Ser. S 6, 891–908 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Cingolani, S., Secchi, S., Squassina, M.: Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. Sect. A 140, 973–1009 (2010)

    Article  MATH  Google Scholar 

  12. Ghimenti, M., Van Schaftingen, J.: Nodal solutions for the Choquard equation. J. Funct. Anal. 271, 107–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghoussoub, N., Yuan, C.: Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponent. Trans. Am. Math. Soc. 352, 5703–5743 (2000)

    Article  MATH  Google Scholar 

  14. Gao, F., Yang, M.: On the Brezis–Nirenberg type critical problem for nonlinear Choquard equation. Sci. China Math. (2017). doi:10.1007/s11425-016-9067-5

  15. Gao, F., Yang, M.: On nonlocal Choquard equations with Hardy–Littlewood–Sobolev critical exponents. J. Math. Anal. Appl. 448, 1006–1041 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kang, D., Deng, Y.: Multiple solutions for inhomogeneous elliptic problems involving critical Sobolev–Hardy exponents. Nonlinear Anal. 60, 729–753 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Küpper, T., Zhang, Z., Xia, H.: Multiple positive solutions and bifurcation for an equation related to Choquard’s equation. Proc. Edinb. Math. Soc. (2) 46, 597–607 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976/77)

  19. Lieb, E., Loss, M.: Analysis, Gradute Studies in Mathematics. AMS, Providence (2001)

    Google Scholar 

  20. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, F., Li, Y., Shi, J.: Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent. Commun. Contemp. Math. 1(6), 1450036 (2014)

    Article  MATH  Google Scholar 

  22. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998)

    Article  MATH  Google Scholar 

  23. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moroz, V., Van Schaftingen, J.: Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moroz, V., Van Schaftingen, J.: Semi-classical states for the Choquard equation. Calc. Var. Partial Differ. Equ. 52, 199–235 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent. Commun. Contemp. Math. 17, 1550005 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pekar, S.: Untersuchungüber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  30. Secchi, S.: A note on Schrödinger–Newton systems with decaying electric potential. Nonlinear Anal. 72, 3842–3856 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tarantello, G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 9, 381–304 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wei, J., Winter, M.: Strongly Interacting Bumps for the Schrödinger–Newton equations. J. Math. Phys. 50, 012905 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc, Boston (1996)

    Google Scholar 

  34. Willem, M.: Functional analysis, Fundamentals and applications. In: Cornerstones, vol. XIV. Birkhäuser/Springer, New York (2013)

  35. Zhao, F., Zhao, L.: Positive solutions for Schrödinger–Poisson equations with a critical exponent. Nonlinear Anal. 70, 2150–2164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao, F., Zhao, L.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Z.: Multiple solutions of nonhomogeneous Chouquard’s equations. Acta Math. Appl. Sin. (English Ser.) 17, 47–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minbo Yang.

Additional information

Partially supported by NSFC (11571317, 11671364) and ZJNSF (LY15A010010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Gao, F. & Yang, M. Multiple solutions for nonhomogeneous Choquard equation involving Hardy–Littlewood–Sobolev critical exponent. Z. Angew. Math. Phys. 68, 61 (2017). https://doi.org/10.1007/s00033-017-0806-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0806-8

Mathematics Subject Classification

Keywords

Navigation