Skip to main content
Log in

The role of the power 3 for elliptic equations with negative exponents

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset {\mathbb{R }}^{N}\) be a bounded regular domain of dimension \(N\ge 3,\;h\) a positive \(L^{1}\) function on \(\Omega .\) Elliptic equations of singular growth like

$$\begin{aligned} -\Delta u=\frac{h(x)}{u^{p}}\quad \mathrm{in}\;\Omega , \quad u>0\quad \mathrm{in}\;\Omega , \quad u=0\quad \mathrm{on}\;\partial \Omega , \end{aligned}$$

have been the target of investigation for decades. A very nice result for existence of solutions of such an equation is due to Lazer–McKenna (Proc AMS 111:720–730, 1991) when \(h\) is a positive continuous function on \(\overline{\Omega }.\) In that paper the Lazer–McKenna obstruction was first presented: the equation has a \(H_{0}^{1}\)-solution if and only if \(p<3.\) In this paper we provide an extension of the classical Lazer–McKenna obstruction and reveal the role of 3. Moreover, we give a local description of the solution set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boccardo, L., Orsina, L.: Semilinear elliptic equations with singular nonlinearities. Calc. Var. Partial Differ. Equ. 37, 363–380 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Diaz, J.I., Hernández, J., Rakotoson, J.M.: On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms. Milan J. Math. 79, 233–245 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Giacomoni, J., Saoudi, K.: Multiplicity of positive solutions for a singular and critical problem. Nonlinear Anal. 71, 4060–4077 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    Google Scholar 

  5. Hernández, J., Mancebo, F.J., Vega, J.M.: Positive solutions for singular nonlinear elliptic equations. Proc. Roy. Soc. Edinb. 137A, 41–62 (2007)

    Google Scholar 

  6. Hirano, N., Saccon, C., Shioji, N.: Brezis–Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem. J. Differ. Equ. 245, 1997–2037 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lazer, A.C., McKenna, P.J.: On a singular nonlinear elliptic boundary value problem. Proc. AMS 111, 720–730 (1991)

    Article  MathSciNet  Google Scholar 

  8. Yijing S.: Compatibility phenomena in singular problems. Proc. Roy. Soc. Edinb. A (accepted for publication)

  9. Yijing, S., Shujie, L.: Some remarks on a superlinear–singular problem: estimates for $\lambda ^{*}$. Nonlinear Anal. 69, 2636–2650 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yijing, S., Shaoping, W.: An exact estimate result for a class of singular equations with critical exponents. J. Funct. Anal. 260, 1257–1284 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yijing, S., Shaoping, W., Yiming, L.: Combined effects of singular and superlinear nonlinearities in some singular boundary value problems. J. Differ. Equ. 176, 511–531 (2001)

    Article  MATH  Google Scholar 

  12. Zhang, Z., Cheng, J.: Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems. Nonlinear Anal. 57, 473–484 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author thanks Professor Wu Shaoping of Zhejiang University for warm encouragement. This work was supported by NSFC Grants 11171341, 11101404, 10971238 and 11271200. The authors thank the referee and Professor Luigi Ambrosio for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Yijing.

Additional information

Communicated by L. Ambrosio.

Appendix: the proof of Theorem 1

Appendix: the proof of Theorem 1

Note that, for any \(u\in H_{0}^{1}(\Omega )\) with \(\int _{\Omega }h(x)|u|^{1-p}dx<\infty ,\) the unique positive minimizer for \(I(tu)\) is \(t(u)u\) with

$$\begin{aligned} t(u)=\left[\frac{\int _{\Omega }h(x)|u|^{1-p}dx}{\Vert u\Vert ^{2}}\right]^{1/(1+p)}, \end{aligned}$$
(4)

that is \(I(t(u)u)=\inf _{t>0}I(tu),\) and \(t(u)u\in {\mathcal{N }^{*}}.\) Since \(t(u_{0})u_{0}\in {\mathcal{N }^{*}}\) by (*), \({\mathcal{N }}(\supset {\mathcal{N }^{*}})\) and \({\mathcal{N }^{*}}\) are not empty. Clearly, since \(tu_{0}\in {\mathcal{N }}\) for all \(t\ge t({u_{0}}),\) \({\mathcal{N }}\) is unbounded. The closeness of \({\mathcal{N }}\) follows easily from Fatou’s Lemma. However, since \(p>1,\) \(\int _{\Omega }h(x)|u|^{1-p}dx\) is not continuous on \(H_{0}^{1}(\Omega ),\) so \({\mathcal{N }^{*}}\) is not anymore a closed set in \(H_{0}^{1}(\Omega ).\)

Furthermore, unbounded \({\mathcal{N }}\) lies in the exterior of \(H_{0}^{1}(\Omega )\) (i.e., stays away from a ball centered about 0). In fact suppose that there is a sequence \((u_{n})\subset \mathcal{N }\) with \(u_{n}\rightarrow 0\) in \(H_{0}^{1}(\Omega ).\) The reversed Hölder inequality then yields

$$\begin{aligned} \left(\int \limits _{\Omega }h^{\frac{1}{p}}(x)dx\right)^{p} \left(\int \limits _{\Omega }\left|u_{n}\right|dx\right)^{1-p}\le \int \limits _{\Omega }h(x)\left|u_{n}\right|^{1-p}dx\le \big \Vert u_{n}\big \Vert ^{2}\rightarrow 0, \end{aligned}$$

consequently,

$$\begin{aligned} \int \limits _{\Omega }\left|u_{n}\right|dx\rightarrow \infty , \end{aligned}$$

since \(p>1,\) which is clearly impossible. Then there is a constant \(c_{1}>0\) so that \(\Vert u_{n}\Vert \ge c_{1}.\)

We turn to \(\inf _{\mathcal{N }}I.\) Since \(\mathcal{N }\) is closed, we examine the best minimizing sequence for \(\inf _{\mathcal{N }}I,\) that is, \((u_{n})\in \mathcal{N }\) satisfying (i) \(I(u_{n})\le \inf _{\mathcal{N }}I +\frac{1}{n};\) (ii) \(I(u_{n})\le I(w)+\frac{1}{n}\Vert u_{n}-w\Vert ,\;\forall w\in \mathcal{N }.\) Since \(I(|u|)=I(u),\) we may assume that \(u_{n}\ge 0\) in \(\Omega .\) Since \(u_{n}\in \mathcal{N }\;(\mathrm{i.e.},\; \int _{\Omega }h(x)|u_{n}|^{1-p}dx\le \Vert u_{n}\Vert ^{2}),\) \(h(x)>0\) a.e. in \(\Omega \) and \(p>1,\) we have \(u_{n}(x)>0\) a.e. in \(\Omega ;\) and observe that as \(n\rightarrow \infty :\)

$$\begin{aligned} \frac{1}{2}\big \Vert u_{n}\big \Vert ^{2} + \frac{1}{p-1}\int \limits _{\Omega }h(x) \left|u_{n}\right|^{1-p}dx\rightarrow \inf _{\mathcal{N }}I\in (-\infty ,\,+\infty ), \end{aligned}$$

we have \(\Vert u_{n}\Vert \le c_{2}\) for suitable constant \(c_{2}>0,\) so (a subsequence of) \(u_{n}\rightarrow u^{*}\) weakly in \(H_{0}^{1}(\Omega ),\) strongly in \(L^{2}(\Omega ),\) and pointwise a.e. in \(\Omega .\)

To take advantage of those constraints involved, we distinguish two cases according to \(u_{n}\) belonging to \(\mathcal{N }\) or \(\mathcal{N ^{*}}.\)

(1) Case 1. Suppose that \((u_{n})\subset \mathcal{N }{\backslash } \mathcal{N ^{*}}\) for all \(n\) large. Fix \(\varphi \in H_{0}^{1}(\Omega ),\) \(\varphi \ge 0\) and \(n\) by now, there holds

$$\begin{aligned} \int \limits _{\Omega }h(x)\left(u_{n}+t\varphi \right)^{1-p}dx\le \int \limits _{\Omega }h(x)u_{n}^{1-p}dx<\big \Vert u_{n}\big \Vert ^{2},\quad \forall t\ge 0, \end{aligned}$$

thanks to \(u_{n}\in \mathcal{N }{\backslash } {\mathcal{N }^{*}}\) and \(p>1.\) Subsequently, choose \(t>0\) sufficiently small such that

$$\begin{aligned} \int \limits _{\Omega }h(x)\left(u_{n}+t\varphi \right)^{1-p}dx<\big \Vert u_{n}+t\varphi \big \Vert ^{2}\quad \left(\mathrm{i.e.,}\;u_{n}+t\varphi \in \mathcal{N }\right), \end{aligned}$$

and by (ii) conclude:

$$\begin{aligned}&\frac{1}{n}\Vert t\varphi \Vert \ge I\left(u_{n}\right)-I\left(u_{n}+t\varphi \right) =\frac{1}{2}\big \Vert u_{n}\big \Vert ^{2} + \frac{1}{p-1}\int \limits _{\Omega }h(x) u_{n}^{1-p}dx-\frac{1}{2}\big \Vert u_{n}+t\varphi \big \Vert ^{2}\\&\quad - \frac{1}{p-1}\int \limits _{\Omega }h(x) \left(u_{n}+t\varphi \right)^{1-p}dx. \end{aligned}$$

Thus, dividing by \(t>0\) and passing to the liminf as \(t\rightarrow 0,\) by Fatou’s Lemma we have

$$\begin{aligned}&\frac{\Vert \varphi \Vert }{n}+\int \limits _{\Omega }\nabla u_{n}\cdot \nabla \varphi dx \ge \int \limits _{\Omega }\liminf _{t\rightarrow 0}\frac{h(x) (u_{n}+t\varphi )^{1-p}-h(x) u_{n}^{1-p}}{(1-p)t}dx\\&\quad =\int \limits _{\Omega }h(x)u_{n}^{-p}\varphi dx, \end{aligned}$$

whence, using Fatou’s Lemma again and letting \(n\) tend to infinity, we obtain

$$\begin{aligned} \int \limits _{\Omega }\nabla u^{*}\cdot \nabla \varphi dx\ge \int \limits _{\Omega }h(x)u^{*-p}\varphi . \end{aligned}$$
(5)

By (5), we know immediately that \(u^{*}\in \mathcal{N }.\) Furthermore, we may estimate:

$$\begin{aligned} \inf _{\mathcal{N }}I=\lim _{n\rightarrow \infty }I\left(u_{n}\right)&\ge \liminf _{n\rightarrow \infty }\left[\frac{1}{2}\int \limits _{\Omega }\big \Vert \nabla u_{n}\big \Vert ^{2}dx\right]+\liminf _{n\rightarrow \infty }\left[\frac{1}{p-1}\int \limits _{\Omega }h(x)u_{n}^{1-p}dx\right]\\&\ge \frac{1}{2}\int \limits _{\Omega }\mid \nabla u^{*}\mid ^{2}dx+\liminf \left[ \frac{1}{p-1}\int \limits _{\Omega }h(x) u_{n}^{1-p}dx\right]\\&\ge \frac{1}{2}\int \limits _{\Omega }\mid \nabla u^{*}\mid ^{2}dx+\frac{1}{p-1}\int \limits _{\Omega }h(x) u^{*1-p}dx\quad (\mathrm{Fatou^{\prime }s Lemma})\\&= I(u^{*})\ge I(t(u^{*})u^{*})\\&\ge \inf _{\mathcal{N ^{*}}}I\ge \inf _{\mathcal{N }}I, \end{aligned}$$

that is,

$$\begin{aligned} u^{*}\in {\mathcal{N }^{*}}\quad (\mathrm{i.e.,}\;t(u^{*})=1). \end{aligned}$$
(6)

(2) Case 2. There exists a subsequence of \((u_{n})\) (which we still call \(u_{n}\)), which belongs to \(\mathcal{N ^{*}}.\)

Fix \(\varphi \in H_{0}^{1}(\Omega ),\;\varphi \ge 0\) and \(n\) by now. Then for all \(t\ge 0,\) \(\int _{\Omega }h(x)(u_{n}+t\varphi )^{1-p}\le \int _{\Omega }h(x)u_{n}^{1-p}<\infty \) which ensures the existence of the corresponding unique positive number for the function \(u_{n}(x)+t\varphi (x),\) denoted by \(f_{n,\varphi }(t),\) so that \(f_{n,\varphi }(t) (u_{n}+t\varphi )\in \mathcal{N ^{*}}\) as in (4), that is,

$$\begin{aligned} f_{n,\varphi }(t)=\left[\frac{\int _{\Omega }h(x)(u_{n}+t\varphi )^{1-p}dx}{\Vert u_{n}+t\varphi \Vert ^{2}}\right]^{1/(1+p)},\quad \forall t\ge 0. \end{aligned}$$

Obviously, \(f_{n,\varphi }(0)=1\) as \(u_{n}\in \mathcal{N ^{*}}.\) The continuity of \(f_{n,\varphi }(t)\) follows from the fact \(p>1\) and dominated convergence. For the sake of simplicity, we assume henceforth that

$$\begin{aligned} f_{n,\varphi }^{\prime }(0):= \lim _{t\rightarrow 0}\frac{f_{n,\varphi }(t)-1}{t}\in [-\infty ,\,+\infty ]. \end{aligned}$$

If the limit does not exist, we let \(t_{k}\rightarrow 0\) (instead of \(t\rightarrow 0\)) with \(t_{k}>0\) chosen in such a way that \(q_{n}:= \lim _{k\rightarrow \infty }\frac{f_{n,\varphi }(t_{k})-1}{t_{k}}\in [-\infty ,\,+\infty ],\) and replace \(f_{n,\varphi }^{\prime }(0)\) by \(q_{n}.\) We deduce that \(f_{n,\varphi }(t)\) has uniform behavior at zero with respect to \(n,\) i.e., \(|f^{^{\prime }}_{n,\varphi }(0)|\le C\) for suitable \(C>0\) independent of \(n.\) In fact, from \(f_{n,\varphi }(t) (u_{n}+t\varphi ),\,u_{n}\in {\mathcal{N }^{*}}\) we have

$$\begin{aligned} 0&= f_{n,\varphi }^{2}(t)\big \Vert u_{n}+t\varphi \big \Vert ^{2} - f_{n,\varphi }^{1-p}(t)\int \limits _{\Omega } h(x) \left(u_{n}+t\varphi \right)^{1-p} dx,\\ 0&= \big \Vert u_{n}\big \Vert ^{2}-\int \limits _{\Omega } h(x) u_{n}^{1-p} dx. \end{aligned}$$

Consequently, \(f^{^{\prime }}_{n,\varphi }(0)\) can be estimated by

$$\begin{aligned} 0&\ge \{\left[f_{n,\varphi }(t)+1\right]\big \Vert u_{n}+t\varphi \big \Vert ^{2}\\ \quad&-(1-p)\left[f_{n,\varphi }(0)+\theta \left(f_{n,\varphi }(t)-f_{n,\varphi }(0)\right)\right]^{-p} \int \limits _{\Omega } h(x) \left(u_{n}+t\varphi \right)^{1-p}\}\\ \quad&\times \left[f_{n,\varphi }(t)-f_{n,\varphi }(0)\right]+\big \Vert u_{n}+t\varphi \big \Vert ^{2}-\big \Vert u_{n}\big \Vert ^{2}\quad ( \mathrm{since}\,p>1). \end{aligned}$$

Dividing by \(t>0\) and passing to the limit as \(t\rightarrow 0,\) we obtain:

$$\begin{aligned} 0&\ge \int \limits _{\Omega }\nabla u_{n}\cdot \nabla \varphi dx+ \left[2\big \Vert u_{n}\big \Vert ^{2}+(p-1)\int \limits _{\Omega } h(x) u_{n}^{1-p} dx\right]f^{^{\prime }}_{n,\varphi }(0)\\&= \int \limits _{\Omega }\nabla u_{n}\cdot \nabla \varphi dx +\left[(p+1)\big \Vert u_{n}\big \Vert ^{2}\right]f^{^{\prime }}_{n,\varphi }(0)\quad (\mathrm{since}\,u_{n}\in {\mathcal{N }^{*}}). \end{aligned}$$

Since \((u_{n})\subset {\mathcal{N }^{*}} (\subset {\mathcal{N }})\) is bounded and \({\mathcal{N }}\) stays away from some ball centered about 0, we conclude that

$$\begin{aligned} f^{^{\prime }}_{n,\varphi }(0)\in [-\infty ,\,+\infty ),\quad \mathrm{and}\quad f^{^{\prime }}_{n,\varphi }(0)\le c_{3}\quad \mathrm{uniformly\;in}\;{ n} \end{aligned}$$
(7)

for suitable constant \(c_{3}>0.\)

On the other hand, \(f^{^{\prime }}_{n,\varphi }(0)\ne -\infty \) and bounded uniformly from below with respect to \(n\). Indeed, by (ii)

$$\begin{aligned}&\frac{1}{n}\left|f_{n,\varphi }(t)-1\right|\big \Vert u_{n}\big \Vert +\frac{1}{n}t f_{n,\varphi }(t)\Vert \varphi \Vert \ge \frac{1}{n} \big \Vert u_{n}-f_{n,\varphi }(t)\left(u_{n}+t\varphi \right)\big \Vert \ge I\left(u_{n}\right)\\&\quad -I\left(f_{n,\varphi }(t)\left(u_{n}+t\varphi \right)\right) = \left(\frac{1}{2}+\frac{1}{p-1}\right)\big \Vert u_{n}\big \Vert ^{2}\\&\quad -\left(\frac{1}{2}+\frac{1}{p-1}\right)\big \Vert f_{n,\varphi }(t)\left(u_{n}+t\varphi \right)\big \Vert ^{2}, \end{aligned}$$

that is,

$$\begin{aligned}&\frac{1}{n}t f_{n,\varphi }(t)\Vert \varphi \Vert +\left(\frac{1}{2}+\frac{1}{p-1}\right)\left[\big \Vert u_{n}+t\varphi \big \Vert ^{2}-\big \Vert u_{n}\big \Vert ^{2}\right] \\&\ \ge \left\{ -\left(\frac{1}{2}+\frac{1}{p-1}\right) \left[f_{n,\varphi }(t)+1\right]\big \Vert u_{n}+t\varphi \big \Vert ^{2}-\frac{\Vert u_{n}\Vert }{n}\,\mathrm{sgn}\left[f_{n,\varphi }(t)-1\right]\right\} \left[f_{n,\varphi }(t)-1\right]. \end{aligned}$$

Noting that \(-[f_{n,\varphi }(t)+1]\Vert u_{n}+t\varphi \Vert ^{2}\rightarrow -2\Vert u_{n}\Vert ^{2}\le -2c_{1}^{2}<0\) as \(t\rightarrow 0,\) from the construction of coefficient we see that \(f^{^{\prime }}_{n,\varphi }(0)\ne -\infty \) and cannot diverge to \(-\infty \) as \(n\rightarrow \infty ,\) that is,

$$\begin{aligned} f^{^{\prime }}_{n,\varphi }(0)\in (-\infty ,\,+\infty ),\quad \mathrm{and}\quad f^{^{\prime }}_{n,\varphi }(0)\ge c_{4}\quad \mathrm{uniformly\;in\;all}\;{ n}\; \mathrm{large}, \end{aligned}$$
(8)

for suitable real number \(c_{4}\in \mathbb{R },\) as claimed.

Putting together (7) and (8) we find that

$$\begin{aligned} f^{^{\prime }}_{n,\varphi }(0)\in (-\infty ,\,+\infty ),\quad \mathrm{and}\quad |f^{^{\prime }}_{n,\varphi }(0)|\le C\quad \mathrm{uniformly\;in\;all}\;{ n}\;\mathrm{large}. \end{aligned}$$

Thus, we can locate \(u^{*}\) in Case 2 (as (6) in Case 1). Fix \(\varphi \in H_{0}^{1}(\Omega ),\;\varphi \ge 0\) and \(n\) by now and write (ii)

$$\begin{aligned}&\frac{1}{n}\left[\left|f_{n,\varphi }(t)-1\right|\cdot \big \Vert u_{n}\big \Vert +t f_{n,\varphi }(t)\Vert \varphi \Vert \right] \ge \frac{1}{n} \big \Vert f_{n,\varphi }(t)\left(u_{n}+t\varphi \right)-u_{n}\big \Vert \\&\quad \ge I\left(u_{n}\right)-I\left(f_{n,\varphi }(t)\left(u_{n}+t\varphi \right)\right) =\frac{1}{2}\big \Vert u_{n}\big \Vert ^{2} + \frac{1}{p-1}\int \limits _{\Omega }h(x) u_{n}^{1-p}dx\\&\qquad -\frac{1}{2}\big \Vert f_{n,\varphi }(t)\left(u_{n}+t\varphi \right)\big \Vert ^{2}-\frac{f_{n,\varphi }^{1-p}(t)}{p-1}\int \limits _{\Omega }h(x) \left(u_{n}+t\varphi \right)^{1-p}dx\\&\quad =-\frac{1}{2}\left[f_{n,\varphi }^{2}(t)-1\right]\big \Vert u_{n}+t\varphi \big \Vert ^{2}-\frac{1}{2} \left[\big \Vert u_{n}+t\varphi \big \Vert ^{2}-\big \Vert u_{n}\big \Vert ^{2}\right]\\&\qquad -\frac{1}{p-1}\left[f_{n,\varphi }^{1-p}(t)-1\right]\int \limits _{\Omega }h(x) \left(u_{n}+t\varphi \right)^{1-p}dx\\&\qquad -\frac{1}{p-1}\left[\int \limits _{\Omega }h(x) \left(u_{n}+t\varphi \right)^{1-p}-h(x) u_{n}^{1-p}dx\right]. \end{aligned}$$

Thus, dividing by \(t>0\) and passing to the liminf as \(t\rightarrow 0,\) by the above assertion (i.e., \(f^{^{\prime }}_{n,\varphi }(0)\in (-\infty ,\,+\infty )\)) we get

$$\begin{aligned} h(x)u_{n}^{-p}\varphi \quad \mathrm{is\;integrable\;in}\;\Omega , \end{aligned}$$

and

$$\begin{aligned}&\frac{1}{n}\left[\left|f^{^{\prime }}_{n,\varphi }(0)\right|\cdot \big \Vert u_{n}\big \Vert +\Vert \varphi \Vert \right] \ge f^{^{\prime }}_{n,\varphi }(0)\left[-\big \Vert u_{n}\big \Vert ^{2}+\int \limits _{\Omega }h(x) u_{n}^{1-p}dx\right]-\int \limits _{\Omega }\nabla u_{n}\cdot \nabla \varphi dx\\&\qquad +\liminf _{t\rightarrow 0}\left[\frac{1}{1-p}\int \limits _{\Omega }h(x) \left(u_{n}+t\varphi \right)^{1-p}-h(x) u_{n}^{1-p}dx\right]\\&\quad =-\int \limits _{\Omega }\nabla u_{n}\cdot \nabla \varphi dx+\liminf _{t\rightarrow 0}\left[\frac{1}{1-p}\int \limits _{\Omega }h(x) \left(u_{n}+t\varphi \right)^{1-p}-h(x) u_{n}^{1-p}dx\right]\\&\quad \ge -\int \limits _{\Omega }\nabla u_{n}\cdot \nabla \varphi dx+\int \limits _{\Omega }h(x)u_{n}^{-p}\varphi dx. \end{aligned}$$

Furthermore, by the above assertion (i.e., \(|f^{^{\prime }}_{n,\varphi }(0)|\le C\) uniformly in all \(n\) large) again, we obtain

$$\begin{aligned} h(x)u^{*-p}\varphi \quad \mathrm{is\;integrable\;in}\;\Omega , \end{aligned}$$

and

$$\begin{aligned} \int \limits _{\Omega }\nabla u^{*}\cdot \nabla \varphi dx\ge \liminf _{n\rightarrow \infty } \int \limits _{\Omega }h(x)u_{n}^{-p}\varphi dx\ge \int \limits _{\Omega }h(x)u^{*-p}\varphi dx, \end{aligned}$$

as \(n\rightarrow \infty .\) That is,

$$\begin{aligned} \int \limits _{\Omega }\nabla u^{*}\cdot \nabla \varphi dx-\int \limits _{\Omega }h(x)u^{*-p}\varphi dx\ge 0,\quad \forall \varphi \in H_{0}^{1}(\Omega ),\quad \varphi \ge 0, \end{aligned}$$
(9)

which gives \(u^{*}\in \mathcal{N }.\) By taking the same argument as in Case 1 we see also

$$\begin{aligned} u^{*}\in \mathcal{N ^{*}}. \end{aligned}$$
(10)

Collecting (5), (6), (9) and (10), we conclude that in either case,

$$\begin{aligned} u^{*}\in {\mathcal{N }^{*}},\quad \mathrm{and}\quad \int \limits _{\Omega }\nabla u^{*}\cdot \nabla \varphi -\int \limits _{\Omega }h(x)u^{*-p}\varphi \ge 0,\quad \forall \varphi \in H_{0}^{1}(\Omega ),\quad \varphi \ge 0. \end{aligned}$$

The strict positivity \(u^{*}(x)\ge c_{5} dist(x,\,\partial \Omega ),\; \forall x\in \Omega \) with suitable constant \(c_{5}>0\) follows from the maximum principle.

Now it is to prove that \(u^{*}\in H_{0}^{1}(\Omega )\) is a solution to (\(E_{h,p}\)) for all \(p>1.\)

Set \(\varphi (x)\equiv (u^{*}(x)+\varepsilon \phi (x))^{+}\in H_{0}^{1}(\Omega )\) for arbitrary \(\phi \in H_{0}^{1}(\Omega ),\) \(\varepsilon >0,\) and apply the above inequalities to find

$$\begin{aligned} 0&\le \int \limits _{\Omega }\nabla u^{*}\cdot \nabla \varphi -h(x)u^{*-p}\varphi \\&= \int \limits _{[u^{*}+\varepsilon \phi \ge 0]}\nabla u^{*}\cdot \nabla (u^{*}+\varepsilon \phi )- h(x)u^{*-p}(u^{*}+\varepsilon \phi )\\&= \left(\int \limits _{\Omega } - \int \limits _{[u^{*}+\varepsilon \phi <0 ]}\right) \nabla u^{*}\cdot \nabla (u^{*}+\varepsilon \phi )- h(x)u^{*-p}(u^{*}+\varepsilon \phi )\\&= \Vert \nabla u^{*}\Vert _{2} ^{2}-\int \limits _{\Omega } h(x) u^{*1-p} dx +\varepsilon \int \limits _{\Omega }\nabla u^{*}\cdot \nabla \phi - h(x)u^{*-p}\phi \\ \quad&-\int \limits _{[u^{*}+\varepsilon \phi < 0]} \nabla u^{*}\cdot \nabla (u^{*}+\varepsilon \phi )- h(x)u^{*-p}(u^{*}+\varepsilon \phi )\\&= \varepsilon \int \limits _{\Omega }\nabla u^{*}\cdot \nabla \phi - h(x)u^{*-p}\phi \quad (\mathrm{since}\,u^{*}\in \mathcal{N ^{*}})\\ \quad&-\int \limits _{[u^{*}+\varepsilon \phi < 0]} \nabla u^{*}\cdot \nabla (u^{*}+\varepsilon \phi )- h(x)u^{*-p}(u^{*}+\varepsilon \phi )\\&\le \varepsilon \int \limits _{\Omega }\nabla u^{*}\cdot \nabla \phi - h(x)u^{*-p}\phi - \varepsilon \int \limits _{[u^{*}+\varepsilon \phi < 0]} \nabla u^{*}\cdot \nabla \phi dx. \end{aligned}$$

Since the measure of the domain of integration \([u^{*}+\varepsilon \phi < 0]\) tends to zero as \(\varepsilon \rightarrow 0,\) we then divide the above expression by \(\varepsilon >0\) to obtain

$$\begin{aligned} \int \limits _{\Omega }\nabla u^{*}\cdot \nabla \phi dx-\int \limits _{\Omega }h(x)u^{*-p}\phi dx\ge 0, \end{aligned}$$

as \(\varepsilon \rightarrow 0.\) Replacing \(\phi \) by \(-\phi \) we conclude:

$$\begin{aligned} \int \limits _{\Omega }\nabla u^{*}\cdot \nabla \phi dx-\int \limits _{\Omega }h(x)u^{*-p}\phi dx= 0,\quad \forall \phi \in H_{0}^{1}(\Omega ), \end{aligned}$$

and therefore \(u^{*}\) is a \(H_{0}^{1}\)-solution to (\(E_{h,p}\)).

In order to prove uniqueness, assume that \(u^{*}\) and \(v^{*}\) both solve (\(E_{h,p}\)). Subtracting the equations we deduce that \(w\equiv u^{*}-v^{*}\in H_{0}^{1}(\Omega )\) satisfies

$$\begin{aligned} \int \limits _{\Omega }|\nabla (u^{*}-v^{*})|^{2}dx=\int \limits _{\Omega }h(x)\left(u^{*-p}-v^{*-p}\right)(u^{*}-v^{*})dx\le 0. \end{aligned}$$

This shows that \(w\equiv 0\) and completes the proof.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yijing, S., Duanzhi, Z. The role of the power 3 for elliptic equations with negative exponents. Calc. Var. 49, 909–922 (2014). https://doi.org/10.1007/s00526-013-0604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0604-x

Keywords

Mathematics Subject Classification (2000)

Navigation