Skip to main content
Log in

Fulton-MacPherson compactification, cyclohedra, and the polygonal pegs problem

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The cyclohedron W n , known also as the Bott-Taubes polytope, arises both as the polyhedral realization of the poset of all cyclic bracketings of the word x 1 x 2...x n and as an essential part of the Fulton-MacPherson compactification of the configuration space of n distinct, labelled points on the circle S 1. The “polygonal pegs problem” asks whether every simple, closed curve in the plane or in the higher dimensional space admits an inscribed polygon of a given shape. We develop a new approach to the polygonal pegs problem based on the Fulton-MacPherson (Axelrod-Singer, Kontsevich) compactification of the configuration space of (cyclically) ordered n-element subsets in S 1. Among the results obtained by this method are proofs of Grünbaum’s conjecture about affine regular hexagons inscribed in smooth Jordan curves and a new proof of the conjecture of Hadwiger about inscribed parallelograms in smooth, simple, closed curves in the 3-space (originally established by Makeev in [Mak]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Axelrod and I. Singer, Chern-Simons perturbation theory II, Journal of Differential Geometry 39 (1994), 173–213.

    MathSciNet  MATH  Google Scholar 

  2. R. Bott and C. Taubes, On the self-linking of knots, Journal of Mathematical Physics 35 (1994), 5247–5287.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Budney, K. Scannell, J. Conant, and D. Sinha. New perspectives on self linking, Advances in Mathematics 191 (2005), 78–113.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. tom Dieck, Transformation Groups, De Gruyter Studies in Mathematics, Vol. 8, The Gruyter, Berlin, 1987.

    MATH  Google Scholar 

  5. A. Emch, Some properties of closed convex curves in the plane, American Journal of Mathematics 35 (1913), 407–412.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Engelking, General Topology, Warszawa, 1977.

  7. W. Fulton and R. MacPherson, Compactification of configuration spaces, Annals of Mathematics 139 (1994), 183–225.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. B. Griffiths, The topology of square pegs in round holes, Proceedings of the London Mathematical Society 62 (1991), 647–672.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Grünbaum, Arrangements and Spreads, American Mathematical Society, Providence, RI, 1972.

    MATH  Google Scholar 

  10. H. Guggenheimer, Finite sets on curves and surfaces, Israel Journal of Mathematics 3 (1965), 104–112.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Hadwiger, Ungelöste Probleme Nr. 53, Elemente der Mathematik 26 (1971), 58.

    MathSciNet  Google Scholar 

  12. H. Hadwiger, D.G. Larman and P. Mani, Hyperrombs inscribed to convex bodies, Journal of Combinatorial Theory. Series B 24 (1978), 290–293.

    Article  MathSciNet  MATH  Google Scholar 

  13. C.M. Hebbert, The inscribed and circumscribed squares of a quadrilateral and their significance in kinematic geometry, Annals of Mathematics 16 (1914/15), 38–42.

    Article  MathSciNet  Google Scholar 

  14. R. P. Jerrard, Inscribed squares in plane curves, Transactions of the American Mathematical Society 98 (1961), 234–241.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Kakeya, On the inscribed rectangles of a closed curvex curve, The Tohoku Mathematical Journal 9 (1916), 163–166.

    MATH  Google Scholar 

  16. G. Kuperberg, Quadrisecants of knots and links, Journal of Knot Theory and its Ramifications 3 (1994), 41–50.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. L. Klee and S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, MAA, Washington, DC, 1991.

    MATH  Google Scholar 

  18. M. Kontsevich, Operads and motives in deformation quantization, Letters in Mathematical Physics 48 (1999), 35–72.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Markl, Simplex, associahedron, and cyclohedron, in Higher Homotopy Structures in Topology and Mathematical Physics, Contemporary Mathematics, Vol. 227, American Mathematical Society, Providence, RI, 1999, pp. 235–265.

    Google Scholar 

  20. M. Markl, S. Shnider, and J. Stasheff, Operads in Algebra, Topology and Physics, Mathematical Surveys and Monographs, Vol. 96, American Mathematical Society, Providence, RI, 2002.

    MATH  Google Scholar 

  21. V. V. Makeev, Quadrangles inscribed in a closed curve and the vertices of a curve, Journal of Mathematical Sciences (New York) 131 (2005), 5395–5400. Translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI).

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Matschke, Equivariant Topology and Applications, Diploma Thesis, TU Berlin, September 2008, http://www.math.tu-berlin.de/~matschke/DiplomaThesis.pdf.

  23. H. R. Morton and D. M. Q. Mond, Closed curves with no quadrisecants, Topology 21 (1982), 235–243.

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Pak, The discrete square peg problem, arXiv:0804.0657v1 [math.MG] 4 Apr 2008.

  25. I. Pak, Lectures on Discrete and Polyhedral Geometry, book in preparation, http://www.math.ucla.edu/~pak/book.htm.

  26. E. Pannwitz, Eine elementargeometrische Eigenschaft von Verschlingungen und Knoten, Mathematische Annalen 108 (1933), 629–672.

    Article  MathSciNet  Google Scholar 

  27. D. Rolfsen, Knots and Links. AMS Chelsea Publishing, American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

  28. D. Sinha, Manifold-theoretic compactifications of configuration spaces, Selecta Mathematica (new series) 10 (2004), 391–428.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. G. Shnirel’man, On some geometric properties of closed curves, (in Russian). Uspehi Matem. Nauk 10 (1944), 34–44; available at http://tinyurl.com/28gsy3.

    MathSciNet  MATH  Google Scholar 

  30. W. Stromquist, Inscribed squares and square-like quadrilaterals in closed curves, Mathematika 36 (1989), 187–197.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Živaljević, User’s guide to equivariant methods in combinatorics, Publications de l’Institut Mathematique (Beograd) 59(73) (1996), 114–130.

    Google Scholar 

  32. R. Živaljević, User’s guide to equivariant methods in combinatorics II, Publications de l’Institut Mathematique (Beograd) 64(78) (1998), 107–132.

    Google Scholar 

  33. R. T. Živaljević, Topological methods, Chapter 14 in Handbook of Discrete and Computational Geometry, (J. E. Goodman and J. O’Rourke, eds.), Chapman & Hall/CRC, London 2004, pp. 305–330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siniša T. Vrećica.

Additional information

To Anders Björner, on the occasion of his 60th birthday.

Supported by Grants 144014 and 144026 of the Serbian Ministry of Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrećica, S.T., Živaljević, R.T. Fulton-MacPherson compactification, cyclohedra, and the polygonal pegs problem. Isr. J. Math. 184, 221–249 (2011). https://doi.org/10.1007/s11856-011-0066-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-011-0066-9

Keywords

Navigation