Skip to main content
Log in

Geometric constructibility of cyclic polygons and a limit theorem

  • Published:
Acta Scientiarum Mathematicarum Aims and scope Submit manuscript

Abstract

We study convex cyclic polygons, that is, inscribed n-gons. Starting from P. Schreiber’s idea, published in 1993, we prove that these polygons are not constructible from their side lengths with straightedge and compass, provided n is at least five. They are non-constructible even in the particular case where they only have two different integer side lengths, provided that n ≠ 6. To achieve this goal, we develop two tools of separate interest. First, we prove a limit theorem stating that, under reasonable conditions, geometric constructibility is preserved under taking limits. To do so, we tailor a particular case of Puiseux’s classical theorem on some generalized power series, called Puiseux series, over algebraically closed fields to an analogous theorem on these series over real square root closed fields. Second, based on Hilbert’s irreducibility theorem, we give a rational parameter theorem that, under reasonable conditions again, turns a non-constructibility result with a transcendental parameter into a non-constructibility result with a rational parameter. For n even and at least six, we give an elementary proof for the non-constructibility of the cyclic n-gon from its side lengths and, also, from the distances of its sides from the center of the circumscribed circle. The fact that the cyclic n-gon is constructible from these distances for n = 4 but non-constructible for n = 3 exemplifies that some conditions of the limit theorem cannot be omitted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Cohn, Algebra. I. 2nd edition, J. Wiley and Sons, 198

  2. D. A. Cox, Why Eisenstein proved the Eisenstein criterion and why Schönemann discovered it first, The American Mathematical Monthly, 118 (2011), 3–21.

    Article  Google Scholar 

  3. G. Czédli and Á. Szendrei, Geometric constructibility, Polygon, Szeged, 1997 (in Hungarian).

    Google Scholar 

  4. D. S. Dummit and R. M. Foote, Abstract Algebra, John Wiley and Sons, 2004.

    MATH  Google Scholar 

  5. M. D. Fried and M. Jarden, Field Arithmetic. 3rd ed., revised by Moshe Jarden, Springer, 2008.

    MATH  Google Scholar 

  6. T. W. Gamelin, Complex Analysis, Springer, 2001.

    Book  Google Scholar 

  7. W. J. Gilbert and W. K. Nicholson, Modern Algebra with Applications. 2nd ed., J. Wiley and Sons, 2004.

    MATH  Google Scholar 

  8. G. Grätzer, Universal Algebra. 2nd edition, Springer, 2008.

    Book  Google Scholar 

  9. I. N. Herstein, Abstract Algebra. 3rd ed., John Wiley and Sons, 1999.

    MATH  Google Scholar 

  10. http://en.wikipedia.org/wiki/Hilbert’s_irreducibility_theorem

  11. D. Hilbert, Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten, Journal für die reine und angewandte Mathematik, 110 (1892), 104–129.

    MATH  Google Scholar 

  12. N. Jacobson, Basic Algebra I, W. H. Freeman and Co., San Francisco, 1974.

    MATH  Google Scholar 

  13. I. Kersten, Algebra, Universitätsverlag Göttingen, 2006.

    Book  Google Scholar 

  14. E. W. Kiss, Introduction to Abstract Algebra, Typotex, Budapest, 2007 (in Hungarian).

    Google Scholar 

  15. F. Lindemann, Über die Zahl π, Math. Ann., 20 (1882), 213–225.

    Article  MathSciNet  Google Scholar 

  16. J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad., 28 (1952), 177–181.

    MathSciNet  MATH  Google Scholar 

  17. Isaac Newton, The method of fluxions and infinite series; with its application to the geometry of curve-lines, Translated from Latin and published by John Colson, 1736.

    Google Scholar 

  18. K. J. Nowak, Some elementary proofs of Puiseux’s theorems, Univ. Iagellonicae Acta Math., 38, 279–282.

  19. W. Rudin, Real and complex analysis. 3rd edition, McGraw-Hill, 2nd printing, 1987.

    MATH  Google Scholar 

  20. J. M. Ruiz, The basic theory of power series, Advanced Lect. in Math., Vieweg, 1993.

    Book  Google Scholar 

  21. V. A. Puiseux, Recherches sur les fonctions algébriques, J. Math. Pures Appl., 15 (1850), 365–480.

    Google Scholar 

  22. V. A. Puiseux, Recherches sur les fonctions algébriques, J. Math. Pures Appl., 16 (1851), 228–240.

    Google Scholar 

  23. http://en.wikipedia.org/wiki/Puiseux_series

  24. M. R. Spiegel, S. Lipschutz, J. J. Schiller and D. Spellman, Complex Variables. 2nd. edition, Schaum’s Outline Series, McGraw-Hill, 2009.

    Google Scholar 

  25. P. Schreiber, On the existence and constructibility of inscribed polygons, Beiträge zur Algebra und Geometrie, 34 (1993), 195–199.

    MathSciNet  MATH  Google Scholar 

  26. L. Rédei, Algebra. I, Akadémiai Kiadó, Budapest, 1954 (in Hungarian).

    MATH  Google Scholar 

  27. P. L. Wantzel, Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec le règle et le compas, J. Math. Pures Appl., 2 (1837), 366–372.

    Google Scholar 

  28. R. Wrede and M. R. Spiegel, Theory and Problems of Advanced Calculus. 2nd edition, Schaum’s Outline Series, McGraw-Hill, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Czédli.

Additional information

Dedicated to the eightieth birthday of Professor László Leindler

Communicated by Á. Kurusa

This research was supported by the European Union and co-funded by the European Social Fund under the project “Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences” of project number “TÁMOP-4.2.2.A-11/1/KONV-2012-0073”, and by NFSR of Hungary (OTKA), grant number K83219.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czédli, G., Kunos, Á. Geometric constructibility of cyclic polygons and a limit theorem. ActaSci.Math. 81, 643–683 (2015). https://doi.org/10.14232/actasm-015-259-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14232/actasm-015-259-3

Key words and phrases

AMS Subject Classifications

Navigation