Skip to main content
Log in

Cohomological equation and cocycle rigidity of discrete parabolic actions in some higher-rank Lie groups

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let \(\mathbb{G}\) denote a higher-rank ℝ-split simple Lie group of the following type: SL(n, ℝ), SOo(m, m), E6(6), E7(7) and E8(8), where m ≥ 4 and n ≥ 3. We study the cohomological equation for discrete, abelian parabolic actions on \(\mathbb{G}\) via representation theory. Specifically, we characterize the obstructions to solving the cohomological equation and construct smooth solutions with Sobolev estimates. We prove that global estimates of the solution are generally not tame, and our non-tame estimates in the case \(\mathbb{G}\) = SL(n, ℝ) are sharp up to finite loss of regularity. Moreover, we prove that for general \(\mathbb{G}\) the estimates are tame in all but one direction, and as an application, we obtain tame estimates for the common solution of the cocycle equations. We also give a sufficient condition for which the first cohomology with coefficients in smooth vector fields is trivial. In the case that \(\mathbb{G}\) = SL(n, ℝ), we show this condition is also necessary. A new method is developed to prove tame directions involving computations within maximal unipotent subgroups of the unitary duals of SL(2, ℝ) ⋉ ℝ2 and SL(2, ℝ) ⋉ ℝ4. A new technique is also developed to prove non-tameness for solutions of the cohomological equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bekka and P. de la Harpe, Irreducibly represented groups, Comment. Math. Helv. 83 (2008), 847–868.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s Property (T), Cambridge University Press, Cambridge, 2008.

    Book  MATH  Google Scholar 

  3. S. Cosentino and L. Flaminio, Equidistribution for higher-rank abelian actions on Heisenberg nil manifolds, J. Mod. Dyn. 9 (2015), 305–353.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Damjanovic and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic ℝkactions, Discrete Contin. Dyn. Syst. 13 (2005), 985–1005.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions. I. KAM method andkactions on the Torus, Ann. of Math. (2) 172 (2010), 1805–1858.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Damjanovic and A. Katok, Local rigidity of homogeneous parabolic actions: I. A model case, J. Mod. Dyn. 5 (2011), 203–235.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Eymard, L’algèbre de Fourier d’un groupe localment compact, Bull. Soc. Math. France 92 (1964), 181–236.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J. 119 (2003), 465–526.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Flaminio, G. Forni and J. Tanis, Effective equidistribution of twisted horocycle flows and horocycle maps, J. Geom. Funct. Anal. 26 (2016), 1359.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, 1995.

    MATH  Google Scholar 

  11. R. Goodman, One-parameter groups generated by operators in an enveloping algebra, J. Funct. Anal. 6 (1970), 218–236.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Howe, A notion of rank for unitary representations of the classical groups, in Harmonic Analysis and Group Representations, Liguori, Naples, 1982, pp. 223–331.

    Google Scholar 

  13. R. Howe and C. C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), 72–96.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. E. Howe and E. C. Tan, Non-Abelian Harmonic Analysis, Springer, New York, 1992.

    Book  MATH  Google Scholar 

  15. A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory, in Smooth Ergodic Theory and its Applications, American Mathematical Society, Providence, RI, 2001, pp. 107–173.

    Chapter  Google Scholar 

  16. A. Katok and A. Kononenko, Cocycle stability for partially hyperbolic systems, Math. Res. Lett. 3 (1996), 191–210.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Katok and R. Spatzier, First cohomology of Anosov actions of higher-rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 131–156.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Katok and R. Spatzier, Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions, Math. Res. Lett. 1 (1994), 193–202.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. W. Knapp, Representation Theory of Semisimple Groups, Princeton University press, Princeton, NJ, 1986.

    Book  MATH  Google Scholar 

  20. S. Lang, SL(2, ℝ), Addison-Wesley, Reading, MA, 1975.

    Google Scholar 

  21. J.-S. Li, Non-vanishing theorems for the cohomology of certain arithmetic quotients, J. Reine Angew. Math. 428 (1992), 177–217.

    MathSciNet  MATH  Google Scholar 

  22. J.-S. Li, The minimal decay of matrix coefficients for classical groups, in Harmonic Analysis in China, Kluwer Academic Publication, Dordrecht, 1995, pp. 146–169.

    Chapter  Google Scholar 

  23. G. W. Mackey, Induced representations of locally compact groups I, Ann. of Math. (2) 55 (1952), 101–139.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. W. Mackey, The Theory of Unitary Group Representations, University of Chicago Press, Chicago, IL, 1976.

    MATH  Google Scholar 

  25. G. A. Margulis, Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory Dynam. Systems 2 (1982), 383–396.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin-Heidelberg-New York, 1991.

    Book  MATH  Google Scholar 

  27. F. I. Mautner, Unitary representations of locally compact groups, II, Ann. of Math. (2) 52 (1950), 528–556.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Mieczkowski, The Cohomological Equation and Representation Theory, Ph.D. Thesis, The Pennsylvania State University, ProQuest, Ann Arbor, MI, 2006.

  29. D. Mieczkowski, The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory, J. Mod. Dyn. 1 (2007), 61–92.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572–615.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J. 113 (2002), 133–192.

    Article  MathSciNet  MATH  Google Scholar 

  32. F. A. Ramirez, Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups, J. Mod. Dyn. 3 (2009), 335–357.

    Article  MathSciNet  MATH  Google Scholar 

  33. F. A. Ramirez, Smooth Cocycles over Homogeneous Dynamocal Systems, Ph.D. Thesis, The University of Michigan, ProQuest, Ann Arbor, MI, 2010.

  34. D. W. Robinson, Elliptic Operators and Lie Groups, Clarendon Press, Oxford, 1991.

    MATH  Google Scholar 

  35. L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247–320.

    Article  MathSciNet  MATH  Google Scholar 

  36. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York-Auckland-Düsseldorf, 1987.

    MATH  Google Scholar 

  37. J. Tanis, The cohomological equation and invariant distributions for horocycle maps, Ergodic Theory Dynam. Systems 12 (2012), 1–42.

    MathSciNet  Google Scholar 

  38. J. Tanis and Z. J. Wang, Cohomological equation and cocycle rigidity of discrete parabolic actions, Discrete Contin. Dyn. Syst. 39 (2019), 3969–4000.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. A. Vogan, The unitary dual of GL(n) over an archimedean field, Inventiones math. 83 (1986), 449–505.

    Article  MathSciNet  MATH  Google Scholar 

  40. Z. J. Wang, Uniform pointwise bounds for Matrix coefficients of unitary representations on semidirect products, J. Funct. Anal. 267 (2014), 15–79.

    Article  MathSciNet  MATH  Google Scholar 

  41. Z. Wang, Cohomological equation and cocycle rigidity of parabolic actions in some higher-rank Lie groups, Geom. Funct. Anal. 25 (2015), 1956–2020.

    Article  MathSciNet  MATH  Google Scholar 

  42. Z. J. Wang, Cocycle rigidity of partially hyperbolic actions, Israel Journal of Mathematics, 225 (2018), 147–191.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Warner, Harmonic Analysis on Semisimple Lie Groups I, II, Springer, Berlin, 1972.

    Book  MATH  Google Scholar 

  44. A. Weil, Basic Number Theory, Springer, Berlin-Heidelberg, 1973.

    Book  MATH  Google Scholar 

  45. R. J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, MA, 1984.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqi Jenny Wang.

Additional information

Approved for Public Release; Distribution Unlimited. Case Number 18–1114. The first author’s affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to convey or imply MITRE’s concurrence with, or support for, the positions, opinions or viewpoints expressed by the authors.

Based on research supported by NSF grant DMS-1700837.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanis, J., Wang, Z.J. Cohomological equation and cocycle rigidity of discrete parabolic actions in some higher-rank Lie groups. JAMA 142, 125–191 (2020). https://doi.org/10.1007/s11854-020-0136-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0136-1

Navigation