Skip to main content
Log in

First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity

  • Published:
Publications Mathématiques de l'Institut des Hautes Études Scientifiques Aims and scope Submit manuscript

Abstract

This is the first in a series of papers exploring rigidity properties of hyperbolic actions ofZ k orR k fork ≥ 2. We show that for all known irreducible examples, the cohomology of smooth cocycles over these actions is trivial. We also obtain similar Hölder and C1 results via a generalization of the Livshitz theorem for Anosov flows. As a consequence, there are only trivial smooth or Hölder time changes for these actions (up to an automorphism). Furthermore, small perturbations of these actions are Hölder conjugate and preserve a smooth volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. W. Casselman andD. Miličić, Asymptotic behavior of matrix coefficients of admissible representations,Duke J. of Math.,49 (1982), 869–930.

    Article  MATH  Google Scholar 

  2. M. Cowling, Sur les coefficients des représentations unitaires des groupes de Lie simple,Lecture Notes in Mathematics,739, 1979, 132–178, Springer Verlag.

    Article  MathSciNet  Google Scholar 

  3. Harish Chandra, Spherical functions on a semisimple Lie group, I,Amer J. of Math.,80 (1958), 241–310.

    Article  Google Scholar 

  4. M. Hirsch, C. Pugh andM. Shub, Invariant manifolds,Lecture Notes in Mathematics,583, Springer Verlag, Berlin, 1977.

    MATH  Google Scholar 

  5. R. Howe, A notion of rank for unitary representations of the classical groups,in A. Figà Talamanga (ed.),Harmonic analysis and group representations, CIME, 1980.

  6. S. Hurder andA. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows,Publ. Math. IHES,72 (1990), 5–61.

    MATH  MathSciNet  Google Scholar 

  7. H.-C. Imhof, An Anosov action on the bundle of Weyl chambers,Ergod. Th. and Dyn. Syst.,5 (1985), 587–599.

    MathSciNet  Google Scholar 

  8. J.-L. Journé, On a regularity problem occurring in connection with Anosov diffeomorphisms,Comm. Math. Phys.,106 (1986), 345–352.

    Article  MATH  MathSciNet  Google Scholar 

  9. J.-L. Journé, A regularity lemma for functions of several variables,Revista Math. Iber.,4 (2), (1988), 187–193.

    Google Scholar 

  10. A. Katok andR. J. Spatzier,Cocycle rigidity of partially hyperbolic actions of higher rank abelian groups, Math. Res. Letters,1 (1994), 193–202.

    MATH  MathSciNet  Google Scholar 

  11. A. Katok andR. J. Spatzier,Differential rigidity of Anosov actions of higher rank Abelian groups, in preparation.

  12. A. Katok andR. J. Spatzier,Differential rigidity of projective lattice actions, in preparation.

  13. A. Katok andR. J. Spatzier,Invariant measures for higher rank hyperbolic abelian actions, MSRI preprint, 059-92, Berkeley, 1992.

  14. A. Livshitz, Cohomology of dynamical systems,Math. U.S.S.R. Izvestija,6 (1972), 1278–1301.

    Article  Google Scholar 

  15. R. de La Llavé, J. Marco andR. Moriyon, Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation,Ann. of Math.,123 (1986), 537–611.

    Article  MathSciNet  Google Scholar 

  16. G. A. Margulis,Discrete subgroups of semisimple Lie groups, Springer Verlag, Berlin, 1991.

    MATH  Google Scholar 

  17. C. C. Moore, Exponential decay of correlation coefficients for geodesic flows,in C. C. Moore (ed),Group representations, ergodic theory, operator algebras, and mathematical physics, Proceedings of a Conference in Honor of George Mackey, MSRI publications, Springer Verlag, 1987, 163–181.

  18. C. Pugh andM. Shub, Ergodicity of Anosov actions,Inventiones Math.,15 (1972), 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  19. N. Qian,Rigidity Phenomena of Group Actions on a Class of Nilmanifolds and Anosov R n-Actions, Ph.D. thesis, California Institute of Technology, 1992.

  20. M. Raghunathan,Discrete subgroups of Lie groups, Springer Verlag, New York, 1972.

    MATH  Google Scholar 

  21. M. Ratner, The rate of mixing for geodesic and horocycle flows,Ergod. Th. and Dyn. Syst.,7 (1987), 267–288.

    MATH  MathSciNet  Google Scholar 

  22. G. Warner,Harmonic Analysis on semisimple Lie groups I, Springer Verlag, Berlin, 1972.

    Google Scholar 

  23. R. J. Zimmer,Ergodic theory and semisimple groups, Boston, Birkhäuser, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by NSF grant DMS 9017995.

Partially supported by the NSF, AMS Centennial Fellow.

About this article

Cite this article

Katok, A., Spatzier, R.J. First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Publications Mathématiques de L’Institut des Hautes Scientifiques 79, 131–156 (1994). https://doi.org/10.1007/BF02698888

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698888

Keywords

Navigation