Skip to main content
Log in

Effective equidistribution of twisted horocycle flows and horocycle maps

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove bounds for twisted ergodic averages for horocycle flows of hyperbolic surfaces, both in the compact and in the non-compact finite area case. From these bounds we derive effective equidistribution results for horocycle maps. As an application of our main theorems in the compact case we further improve on a result of Venkatesh, recently already improved by Tanis and Vishe, on a sparse equidistribution problem for classical horocycle flows proposed by Shah and Margulis, and in the general non-compact, finite area case we prove bounds on Fourier coefficients of cusp forms which are comparable to the best known bounds of Good in the holomorphic case, and of Bernstein and Reznikov in the Maass (non-holomorphic) case. Our approach is based on Sobolev estimates for solutions of the cohomological equation and on scaling of invariant distributions for twisted horocycle flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein J., Reznikov A.: Analytic continuation of representations and estimates of automorphic forms. Annals of Mathematics 150, 329–352 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain J.: On the maximal ergodic theorem for certain subsets of the integers. Israel Journal of Mathematics 61(1), 39–72 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bufetov and G. Forni. Limit Theorems for Horocycle Flows. Annales scientifiques de l’cole Normale Suprieure, (5)47 (2014), 851–903. arXiv:1104.4502v1.

  4. Burger M.: Horocycle flow on geometrically finite surfaces. Duke Mathematical Journal 61, 779–803 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Cartan. Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes. Hermann, Paris (1964).

  6. Dani S. G.: Invariant measures and minimal sets of horospherical flows. Inventiones Mathematicae 64(2), 357–385 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Deligne. Formes modulaires et reprśentations l-adiques. In: Séminaire Bourbaki 11, Exposé 355, Vol. 1968/69. pp. 139–172.

  8. P. Deligne, La conjecture de Weil. I. Publications Mathématiques de l’IHÉS, 43 (1974), 273–307.

  9. Deligne P., Serre J.-P.: Formes modulaires de poids 1. Annales Scientifiques de l’École Normale Supérieure 7, 507–530 (1974)

    MathSciNet  MATH  Google Scholar 

  10. Flaminio L., Forni G.: Invariant Distributions and Time Averages for Horocycle Flows. Duke Mathematical Journal 119(3), 465–526 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flaminio L., Forni G.: Equidistribution of nilflows and applications to theta sums. Ergodic Theory Dynamin Systems 26, 409–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Flaminio & G. Forni. On effective equidistribution for higher step nilflows. Preprint. arXiv:1407.3640.

  13. H. Furstenberg. The unique ergodicity of the horocycle flow. In: Recent Advances in Topological Dynamics (New Haven, Conn., 1972), LNM, Vol. 318. Springer, Berlin (1973), pp. 95–115.

  14. A. Good. Cusp forms and eigenfunctions of the Laplacian. Mathematische Annalen, 255 (1981), 523–548.

  15. D. A. Hejhal. On the uniform equidistribution of long closed horocycles, Loo-Keng Hua: a great mathematician of the twentieth century. Asian Journal of Mathematics, (4)4 (2000), 839–853.

  16. G. A. Margulis. Problems and conjectures in rigidity theory. In: Mathematics: frontiers and perspectives. American Mathematical Society, Providence 2000, pp. 161–174.

  17. P. Michel. Analytic number theory and families of automorphic L-functions. In: Automorphic forms and applications, Park City, UT, (2002), IAS/Park City Math. Ser., Vol. 12, American Mathematical Society, Providence (2007), pp. 179–296.

  18. R. A. Rankin. Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions. II. The order of the Fourier coefficients of integral modular forms. Proc. Cambridge Philos. Soc. Vol. 35 (1939), pp. 357–372.

  19. Ratner M.: The rate of mixing for geodesic and horocycle flows. Ergodic Theory Dynamin Systems 7, 267–288 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Reznikov A.: Rankin–Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms. Journal of the American Mathematical Society 21(2), 439–477 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sarnak P.: Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series. Communications on Pure and Applied Mathematics 34, 719–739 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Sarnak, A. Ubis. The horocycle flow at prime times. Journal de mathématiques pures et appliquées, (2)103 (2015), 575–618.

  23. A. Selberg. On the estimation of Fourier coefficients of modular forms. In: Proc. Sympos. Pure Math., Vol. VIII, American Mathematical Society, Providence (1965), pp. 1–15.

  24. Shah N. A.: Limit distributions of polynomial trajectories on homogeneous spaces. Duke Mathematical Journal 75(3), 711–732 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Strömbergsson A.: On the uniform equidistribution of long closed horocycles. Duke Mathematical Journal 123(3), 507–547 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Strömbergsson A.: On the deviation of ergodic averages for horocycle flows. Journal of Modern Dynamics 7, 291–328 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Sullivan. Discrete conformal groups and measurable dynamics. Bulletin of the American Mathematical Society (N.S.), (1)6 (1982), 57–73.

  28. J. Tanis. The Cohomological Equation and Invariant Distributions for Horocycle Maps. Ergodic Theory and Dynamical systems, 12 (2012), 1–42. doi:10.1017/etds.2012.125

  29. J. Tanis and P. Vishe. Uniform bounds for period integrals and sparse equidistribution. International Mathematics Research Notices (2015). doi:10.1093/imrn/rnv115.

  30. Venkatesh A.: Sparse equidistribution problems, period bounds and subconvexity. Annals of Mathematics 172, 989–1094 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Zheng. Sparse Equidistribution of Unipotent Orbits in Finite-Volume Quotients of \({PSL(2,{\mathbb{R}})}\). Journal of Modern Dynamics, 10 (2016), 1–21. doi:10.3934/jmd.2016.10.1

  32. D. Zagier. Eisenstein series and the Riemann zeta function. In: Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math. Vol. 10. Tata Inst. Fund. Res., Bombay (1981), pp. 275–301.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Forni.

Additional information

L. Flaminio was supported in part by the Labex CEMPI. G. Forni was supported by the NSF grant DMS 1201534 and by a Simons Fellowship. J. Tanis was partially supported by the ANR grant ’GeoDyM’ (ANR-11-BS01-0004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flaminio, L., Forni, G. & Tanis, J. Effective equidistribution of twisted horocycle flows and horocycle maps. Geom. Funct. Anal. 26, 1359–1448 (2016). https://doi.org/10.1007/s00039-016-0385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0385-4

Keywords and phrases

Mathematics Subject Classification

Navigation