Skip to main content
Log in

Cohomological equation and cocycle rigidity of parabolic actions in some higher-rank Lie groups

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let \({\mathbb{G}}\) denote a higher-rank \({\mathbb{R}}\)-split simple Lie group of the following type: \({SL(n,\mathbb{R})}\), SO o (m, m), E 6(6), E 7(7) and E 8(8), m ≥ 4. For any unitary representation \({(\pi,\mathcal{H})}\) of \({\mathbb{G}}\) without non-trivial \({\mathbb{G}}\)-invariant vectors, we study smooth solutions of the cohomological equation \({\mathfrak{u}f=g}\), where \({\mathfrak{u}}\) is a vector in the root space of \({\mathfrak{G}}\), the Lie algebra of \({\mathbb{G}}\) and g is a given vector in \({\mathcal{H}}\). We characterize the obstructions to solving the cohomological equation, construct smooth solutions of the cohomological equation and obtain tame Sobolev estimates for f. We also study common solutions to (the infinitesimal version of) the cocycle equation \({\mathfrak{u}h=\mathfrak{v}g}\), where \({\mathfrak{u}}\) and \({\mathfrak{v}}\) are commutative vectors in different root spaces of \({\mathfrak{G}}\) and g and h are given vectors in \({\mathcal{H}}\). We give the sufficient condition under which the cocycle equation has a common solution: (∗) if \({\mathfrak{u}}\) and \({\mathfrak{v}}\) embed in \({\mathfrak{sl}(2,\mathbb{R})\times \mathbb{R}}\), then the common solution exists. In fact, condition (∗) is also necessary when \({\mathbb{G}=SL(n,\mathbb{R})}\). We show counter examples in each \({SL(n,\mathbb{R})}\), n ≥ 3 if condition (∗) is not satisfied. Especially, the cocycle rigidity always fails for \({SL(3,\mathbb{R})}\). As an application, we obtain smooth cocycle rigidity for higher rank parabolic actions over \({\mathbb{G}/\Gamma}\) if the Lie algebra of the acting parabolic subgroup contains a pair \({\mathfrak{u}}\) and \({\mathfrak{v}}\) satisfying property (∗). The main new ingredient in the proof is making use of unitary duals of \({SL(2,\mathbb{R})\ltimes\mathbb{R}^2}\) and \({(SL(2,\mathbb{R})\ltimes\mathbb{R}^2)\ltimes\mathbb{R}^3}\) obtained by Mackey theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bekka B., De La Harpe P., Valette A.: Kazhdan’s Property (T), New Mathematical Monographs, Vol. 11. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  2. Bekka B., De La Harpe P.: Irreducibly represented groups. Commentarii Mathematici Helvetici 83(4), 847–868 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Damjanovic D., Katok A.: Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic \({\mathbb{R}^k}\) actions. Discrete and Continuous Dynamical Systems 13, 985–1005 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Damjanovic D., Katok A.: Local rigidity of partially hyperbolic actions. I. KAM method and \({\mathbb{Z}^k}\) actions on the Torus. Annals of Mathematics 172, 1805–1858 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Damjanovic D., Katok A.: Local rigidity of homogeneous parabolic actions: I. A model case. Journal of Modern Dynamics N2(5), 203–235 (2011)

    MathSciNet  Google Scholar 

  6. Eymard P.: L’algèbre de Fourier d’un groupe localment compact. Bulletin de la Société Mathématique de France 92, 181–236 (1964)

    MathSciNet  MATH  Google Scholar 

  7. Flaminio L., Forni G.: Invariant distributions and time averages for horocycle flows. Duke Mathematical Journal 119(3), 465–526 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Folland G.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  9. Oh H.: Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants. Duke Mathematical Journal 113(1), 133–192 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Howe. A notion of rank for unitary representations of the classical groups. In: Harmonic Analysis and Group Representations, Liguori, Naples (1982), pp. 223–331

  11. Howe R., Moore C. C.: Asymptotic properties of unitary representations. Journal of Functional Analysis, Kluwer Academic 32, 72–96 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Howe R., Tan E. C.: Non-Abelian Harmonic Analysis. Springer, New York (1997)

    Google Scholar 

  13. Li J.-S.: Non-vanishing theorems for the cohomology of certain arithmetic quotients. Journal für die reine und angewandte Mathematik 428, 177–217 (1992)

    MATH  Google Scholar 

  14. Li J.-S.: The minimal decay of matrix coefficients for classical groups. In: Harmonic Analysis in China, Mathematics with Applications, Vol. 327, pp. 146–169. Kluwer Acad. Publ., Dordrecht (1995)

    Google Scholar 

  15. A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory. In: Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, In collaboration with E. A. Robinson, Jr., Vol. 69 (2001), pp. 107–173

  16. Katok A., Kononenko A.: Cocycle stability for partially hyperbolic systems. Mathematical Reserach Letters 3, 191–210 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Katok A., Spatzier R.: First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Publications Mathématiques de l’IHÉS 79, 131–156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Katok A., Spatzier R.: Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions. Mathematical Research Letters 1, 193–202 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Katok and Z. J. Wang. Cocycle rigidity of partially hyperbolic actions (submited)

  20. D. Mieczkowski. The Cohomological Equation and Representation Theory. Ph.D thesis, The Pennsylvania State University (2006)

  21. Mieczkowski D.: The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory. Journal of Modern Dynamics 1, 61–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Knapp A. W.: Representation Theory of Semisimple groups—An Overview Based on Examples. Princeton University Press, Princeton (1986)

    MATH  Google Scholar 

  23. S. Lang. \({SL(2,\mathbb{R})}\). Addison-Wesley, Reading (1975)

  24. Mackey G. W.: Induced representations of locally compact groups I. Annals of Mathematics 55, 101–139 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mackey G. W.: The Theory of Unitary Group Representations. University of Chicago Press, Chicago (1976)

    MATH  Google Scholar 

  26. Margulis G.A.: Finitely-additive invariant measures on Euclidean spaces. Ergodic Theory and Dynamical Systems 2, 383–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Margulis G. A.: Discrete Subgroups of Semisimple Lie Groups. Springer, Berlin, Heidelberg, New York (1991)

    Book  MATH  Google Scholar 

  28. Mautner F. I.: Unitary representations of locally compact groups II. Annals of Mathematics 52(2), 528–556 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nelson E.: Analytic vectors. Annals of Mathematics 70(2), 572–615 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  30. Goodman R.: One-parameter groups generated by operators in an enveloping algebra. Journal of Functional Analysis 6, 218–236 (1970)

    Article  MATH  Google Scholar 

  31. D. W. Robinson. Elliptic Operators and Lie Groups, Oxford Mathematical Monographs. Oxford University press, Oxford (1991).

  32. Rothschild L. P., Stein E. M.: Hypoelliptic differential operators and nilpotent groups. Acta Mathematica 137, 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  33. W. Rudin. Real and complex analysis, 3rd edn. McGraw-Hill Education (1986).

  34. Ramirez F. A.: Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups. Journal of Modern Dynamics 3(3), 335–357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. F. A. Ramirez. smooth cocycles over homogeneous dynamocal systems. Ph.D thesis, The University of Michigan (2010)

  36. Vogan D. A.: The unitary dual of GL(n) over an archimedean field. Inventiones math 83, 449–505 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang Z. J.: Uniform pointwise bounds for Matrix coefficients of unitary representations on semidirect products. Journal of Functional Analysis 1, 15–79 (2014)

    Article  Google Scholar 

  38. Warner G.: Harmonic Analysis on Semisimple Lie Groups I, II. Springer, Berlin (1972)

    Book  Google Scholar 

  39. Weil A.: Basic Number Theory. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  40. Zimmer R. J.: Ergodic Theory and Semisimple Groups. Birkhäuser, Boston (1984)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqi Jenny Wang.

Additional information

This paper is Based on research supported by NSF grant DMS-1346876.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z.J. Cohomological equation and cocycle rigidity of parabolic actions in some higher-rank Lie groups. Geom. Funct. Anal. 25, 1956–2020 (2015). https://doi.org/10.1007/s00039-015-0351-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-015-0351-6

Keywords and phrases

Navigation