Skip to main content

The Minimal Decay of Matrix Coefficients for Classical Groups

  • Chapter
Harmonic Analysis in China

Part of the book series: Mathematics and Its Applications ((MAIA,volume 327))

Abstract

Let G be a reductive Lie group with compact center. A unitary representation p of G is said to be strongly L p if, for a dense set of vectors v in the space of ρ, the matrix coefficients x ↦ (ρ(x)v,v) all lie in L p(G). Let p(G) be the smallest real number such that any irreducible infinite dimensional unitary representation is strongly L p for any p > p(G). The existence of p(G) < ∞ is equivalent to Kazhdan’s “property (T)”. Indeed, the explicit determination of p(G) may be viewed as a quantitative version of Kazhdan’s property (T). In this paper we compute the numbers p(G) for the real classical groups.

Sloan Fellow. Supported in part by NSF grant No. DMS-9203142

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Adams, Discrete Spectrum of the Dual Pair (O(p,q),Sp(2m,R), Invent. Math.74(1983), 449–475.

    Article  MathSciNet  MATH  Google Scholar 

  2. M.W. Baldoni-Silva, Unitary dual of Sp(n,1), n ≥ 2, Duke Math. Journal 48(1981), 549–583.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Barbasch , The Unitary Dual for Complex Classical Lie Groups, Invent. math. 96(1989), 103–176.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Cowling, U. Haagerup, R. Howe, Almost L 2 matrix coefficients, J. reine angew. Math.387(1988),97–110.

    MathSciNet  MATH  Google Scholar 

  5. W. Duke, R. Howe And J-S. LI, Estimating Hecke eigenvalues of Siegel modular forms, Duke Math. Journal,67(1992), 219–240.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Faraut, Distributions sphérique sur les espaces hyperboliques, J. Math. Pures Appl.58,369–444.

    Google Scholar 

  7. R. Howe, θ series and invariant theory,in Automorphic forms, representations, and L-functions, Proc. Symp. Pure Math., vol. 33, American Math. Soc., Providence, 1979, 275–285.

    Google Scholar 

  8. R. Howe, On some results of Strichartz and of Rallis and Schiffmann, Journal of Functional Analysis, 32(1979), 297–303.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Howe, On a notion of rank for unitary representations of classical groups, in C.I.M.E. Summer School on Harmonic Analysis, Cortona,ed.,1980, 223–331.

    Google Scholar 

  10. R. Howe, Transcending Classical Invariant Theory, Journal Amer. Math. Soc.,2(1989),535–552.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Howe, Remarks on Classical Invariant Theory, Trans. Amer. Math. Soc.313(1989),539–570.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Howe And C. Moore, Asymptotic properties of unitary representations, J. Func. Analysis,32(1979), 72–96.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Kashiwara And M. Vergne, On the Segal-Shale-Weil Representations and Harmonic Polynomials , Invent. Math.44(1978),1–47.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. W. Knapp, Representation Theory of Semisimple Groups: an overview based on examples, Princeton Univ. Press, Princeton, N.J., 1986.

    MATH  Google Scholar 

  15. B. Kostant, On the existence and irreducibility of certain series of representations, Bulletin of AMS,75 (1969), 627–642.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Kudla, On the Local Theta Correspondence, Invent. Math.,83(1986), 229–255.

    Article  MathSciNet  MATH  Google Scholar 

  17. J-S. LI, On the discrete series of generalized Stiefel manifolds, to appear in Transactions of AMS.

    Google Scholar 

  18. J-S. LI, On the classification of irreducible low rank unitary representations of classical groups, Compositio Math.,71(1989),29–48.

    MathSciNet  MATH  Google Scholar 

  19. J-S. LI, Singular Unitary Representations of Classical Groups, Inven. Math. 97(1989),237–255.

    Article  MATH  Google Scholar 

  20. J-S. LI, Theta liftings for unitary representations with non-zero cohomology, Duke Math. Journal,61(1990), 913–937.

    Article  MATH  Google Scholar 

  21. J-S. LI, Non-vanishing Theorems for the Cohomology of Certain Arithmetic Quotients, J. reine angew. Math. 428(1992), 177–217.

    MathSciNet  MATH  Google Scholar 

  22. G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzeb. Springer-Verlag, 1989.

    Google Scholar 

  23. C. Moeglin, Correspondance de Howe pour les Paires Reductives Duales, Quelques Calculs Dans le Cas Archimedien, J. of Func. Analysis,85(1990),1–85.

    Article  MathSciNet  Google Scholar 

  24. S. Rallis And G. Schiffmann, Discrete Spectrum of the Weil Representation, Bull. of Amer. Math. Soc.83(1977),267–170.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Tits Classification of algebraic semisimple groups, in Algebraic groups and discontinuous subgroups, A. Borel and G. D. Mostow, eds., Proc. Symp. Pure Math., vol. IX, 33–62.

    Google Scholar 

  26. D. Vogan, The Unitary Dual of GL(n) Over an Archimedean Field, Invent. Math., 83 (1986),449–505.

    MathSciNet  MATH  Google Scholar 

  27. D. Vogan And G. Zuckerman, Unitary Representations with Non-Zero Cohomology, Compositio Math., 53(1984), 51–90.

    MathSciNet  MATH  Google Scholar 

  28. A. Weil, Sur certains groupes d’operateurs unitaires, Acta Math., 111 (1964),143–211.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, JS. (1995). The Minimal Decay of Matrix Coefficients for Classical Groups. In: Cheng, M., Deng, Dg., Gong, S., Yang, CC. (eds) Harmonic Analysis in China. Mathematics and Its Applications, vol 327. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0141-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0141-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4064-8

  • Online ISBN: 978-94-011-0141-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics