Skip to main content
Log in

Effects of Tungsten-Carbide Particle Addition on Friction-Stir-Processed Fe50(CoCrMnNi)50 Medium-Entropy Alloy

  • Progress in High-Entropy Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The Fe50(CoCrMnNi)50 medium-entropy alloy can be considered a bridging alloy between the multicomponent medium- and high-entropy alloys and conventional steels. In this study, the combined effect of friction stir processing (FSP) and addition of WC-rich particles on the microstructure and mechanical properties of Fe50(CoCrMnNi)50 was investigated. The parameters of tool rotation speed and stir speed of the FSP were fixed at 400 rpm and 0.3 mm/s, respectively. In the stir zone, formation of ultrafine grains was observed, owing to the interrelated combination of dynamic recrystallization by the FSP, particle-stimulated nucleation, and grain-coarsening inhibition by the WC-rich particles. The combined utilization of FSP and WC-rich particles significantly improved the mechanical properties of Fe50(CoCrMnNi)50, owing to the Hall–Petch grain boundary and particle hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Yeh, Eur. J. Control 31, 633 (2006).

    Google Scholar 

  2. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.Y. Gan, T.S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  3. J.I. Lee, H.S. Oh, J.H. Kim, and E.S. Park, J. Korean Inst. Met. Mater. 55, 1 (2017).

    Article  Google Scholar 

  4. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).

    Article  Google Scholar 

  5. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Acta Mater. 81, 428 (2014).

    Article  Google Scholar 

  6. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng., A 375–377, 213 (2004).

    Article  Google Scholar 

  7. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science (80-.) 345, 1153 (2014).

    Article  Google Scholar 

  8. M. Kang, J.W. Won, K.R. Lim, S.H. Park, S.M. Seo, and Y.S. Na, J. Korean Inst. Met. Mater. 55, 732 (2017).

    Google Scholar 

  9. J.H. Kim and Y.S. Na, Met. Mater. Int. 25, 296 (2019).

    Article  Google Scholar 

  10. N. Park, B.J. Lee, and N. Tsuji, J. Alloys Compd. 719, 189 (2017).

    Article  Google Scholar 

  11. W.M. Choi, S. Jung, Y.H. Jo, S. Lee, and B.J. Lee, Met. Mater. Int. 23, 839 (2017).

    Article  Google Scholar 

  12. I. Ondicho, M. Choi, W. Choi, J. Bae, H. Reza, B. Lee, S. Ig, and N. Park, J. Alloys Compd. 785, 320 (2019).

    Article  Google Scholar 

  13. E.O. Hall, Proc. Phys. Soc. Lond. Sect. B 64, 747 (1951).

    Article  Google Scholar 

  14. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    Google Scholar 

  15. M. Choi, I. Ondicho, N. Park, and N. Tsuji, J. Alloys Compd. 780, 959 (2019).

    Article  Google Scholar 

  16. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, Acta Mater. 102, 187 (2016).

    Article  Google Scholar 

  17. J.Y. He, H. Wang, Y. Wu, X.J. Liu, H.H. Mao, T.G. Nieh, and Z.P. Lu, Intermetallics 79, 41 (2016).

    Article  Google Scholar 

  18. X. Xian, L. Lin, Z. Zhong, C. Zhang, C. Chen, K. Song, J. Cheng, and Y. Wu, Mater. Sci. Eng., A 713, 134 (2018).

    Article  Google Scholar 

  19. R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng., R 50, 1 (2005).

    Article  Google Scholar 

  20. F.R. Cao, G.Q. Xue, B.J. Zhou, and S.C. Wang, Met. Mater. Int. 25, 570 (2019).

    Article  Google Scholar 

  21. R.S. Mishra, Z.Y. Ma, and I. Charit, Mater. Sci. Eng., A 341, 307 (2003).

    Article  Google Scholar 

  22. D. Yadav and R. Bauri, Mater. Sci. Eng., A 539, 85 (2012).

    Article  Google Scholar 

  23. Y.-B. Lim and K.-J. Lee, J. Weld. Join. 37, 35 (2019).

    Article  Google Scholar 

  24. J.-D. Kim, E.-G. Jin, S.P. Murugan, and Y.-D. Park, J. Weld. Join. 35, 6 (2017).

    Article  Google Scholar 

  25. X. Zheng, M. Li, C. Jin, R. Chen, W. Yin, X. Tang, F. Lei, Z. Wang, J. Ju, D. Lee, and A. Yan, J. Alloys Compd. 728, 607 (2017).

    Article  Google Scholar 

  26. D. Deng, H. Xia, and Y. Ge, Mater. Trans. 54, 2144 (2013).

    Article  Google Scholar 

  27. T.E. Mora and S.A. Spiewak, J. Manuf. Process. 5, 46 (2008).

    Article  Google Scholar 

  28. M.G. Jo, H.J. Kim, M. Kang, P.P. Madakashira, E.S. Park, J.Y. Suh, D.I. Kim, S.T. Hong, and H.N. Han, Met. Mater. Int. 24, 73 (2018).

    Article  Google Scholar 

  29. Z.G. Zhu, Y.F. Sun, F.L. Ng, M.H. Goh, P.K. Liaw, H. Fujii, Q.B. Nguyen, Y. Xu, C.H. Shek, S.M.L. Nai, and J. Wei, Mater. Sci. Eng., A 711, 524 (2018).

    Article  Google Scholar 

  30. J. Weidow and H.O. Andrén, Acta Mater. 58, 3888 (2010).

    Article  Google Scholar 

  31. Z.G. Zhu, Y.F. Sun, M.H. Goh, F.L. Ng, Q.B. Nguyen, H. Fujii, S.M.L. Nai, J. Wei, and C.H. Shek, Mater. Lett. 205, 142 (2017).

    Article  Google Scholar 

  32. T. Wang, S. Shukla, M. Komarasamy, K. Liu, and R.S. Mishra, Mater. Lett. 236, 472 (2019).

    Article  Google Scholar 

  33. G. Huang, J. Wu, W. Hou, Y. Shen, and J. Gao, Mater. Manuf. Process. 34, 147 (2019).

    Article  Google Scholar 

  34. R. Bauri, D. Yadav, and G. Suhas, Mater. Sci. Eng., A 528, 4732 (2011).

    Article  Google Scholar 

  35. A.A. Fallahi, A. Shokuhfar, A. Ostovari Moghaddam, and A. Abdolahzadeh, J. Manuf. Process. 30, 418 (2017).

    Article  Google Scholar 

  36. Y.F. Sun and H. Fujii, Mater. Sci. Eng., A 528, 5470 (2011).

    Article  Google Scholar 

  37. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Amsterdam: Elsevier, 2004).

    Google Scholar 

  38. R.P. De Siqueira, H.R.Z. Sandim, and D. Raabe, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 469 (2013).

    Article  Google Scholar 

  39. N. Kumar, M. Komarasamy, P. Nelaturu, Z. Tang, P.K. Liaw, and R.S. Mishra, JOM 67, 1007 (2015).

    Article  Google Scholar 

  40. R.W. Armstrong, Materials (Basel). 4, 1287 (2011).

    Article  Google Scholar 

  41. A.J. Ardell, Metall. Trans. A 16, 2131 (1985).

    Article  Google Scholar 

  42. Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, and J.J. Kai, Acta Mater. 138, 72 (2017).

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Research Foundation of Korea funded by the Korean government [Ministry of Science, ICT and Future Planning, MSIP; NRF-2015R1C1A1A01052856].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nokeun Park or Unhae Lee.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nugroho, J.A., Jodi, D.E., Park, N. et al. Effects of Tungsten-Carbide Particle Addition on Friction-Stir-Processed Fe50(CoCrMnNi)50 Medium-Entropy Alloy. JOM 71, 3452–3459 (2019). https://doi.org/10.1007/s11837-019-03719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03719-x

Navigation