Skip to main content
Log in

High-Temperature Deformation Behavior of Duplex Mg–8.41Li–1.80Al–1.77Zn Alloy Processed by Friction Stir Processing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

To explore the ductility, a novel Mg–8.41Li–1.80Al–1.77Zn (designated as LAZ822) alloy was fabricated by casting, hot rolling and friction stir processing. The maximum elongation to failure of 489.5% was demonstrated in a fine-grained LAZ822 alloy at a temperature of 573 K and an initial strain rate of 1.67 × 10−4 s−1. The true stress exponent of 2, the grain size exponent of 2 and the activation energy of 89.44–121.14 kJ/mol confirm that grain boundary sliding controlled by lattice diffusion governs the rate-controlling deformation process at the temperatures of 523 and 573 K. The viscous resistance models of dual phases were newly established. At 573 K, the lattice viscous resistance of the α-Mg phase is 2644 times as large as that of the β-Li phase, whereas the grain boundary viscous resistance of the α-Mg phase is 3.3 times as large as that of the β-Li phase. Some α-Mg grains remain in an equiaxed state while the other α-Mg grains become connected at elevated temperatures. This experimental evidence corroborates the existence of dynamic grain connection growth. Cavity growth mechanism maps were constructed. The maps reveal that power-law cavity growth or strain controlled cavity growth is the predominant cavity growth mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S.H. Jeong, Y.J. Kim, K.H. Kong, T.H. Cho, Y.K. Kim, H.K. Lim, W.T. Kim, D.H. Kim, Met. Mater. Int. 24, 391 (2018)

    Article  Google Scholar 

  2. H.J. Wu, T.Z. Wang, R.Z. Wu, L.G. Hou, J.H. Zhang, X.L. Li, M.L. Zhang, J. Mater. Process. Technol. 254, 265 (2018)

    Article  Google Scholar 

  3. Y. Yang, X.M. Xiong, J.F. Su, X.D. Peng, H.M. Wen, G.B. Wei, F.S. Pan, E.J. Lavernia, J. Alloys Compd. 750, 696 (2018)

    Article  Google Scholar 

  4. S. Feng, W.C. Liu, J. Zhao, G.H. Wu, H.H. Zhang, W.J. Ding, Mater. Sci. Eng. A 692, 9 (2017)

    Article  Google Scholar 

  5. Y. Zou, L.H. Zhang, Y. Li, H.T. Wang, J.B. Liu, P.K. Liaw, H.B. Bei, Z.W. Zhang, J. Alloys Compd. 735, 2625 (2018)

    Article  Google Scholar 

  6. Y. Zeng, B. Jiang, Q.R. Yang, G.F. Quan, J.J. He, Z.T. Jiang, F.S. Pan, Mater. Sci. Eng. A 700, 59 (2017)

    Article  Google Scholar 

  7. S.A. Askariani, H. Pishbin, M. Moshref-Javadi, J. Alloys Compd. 724, 859 (2017)

    Article  Google Scholar 

  8. Z.L. Zhao, Z.W. Sun, W. Liang, Y. Wang, L.P. Bian, Mater. Sci. Eng. A 702, 206 (2017)

    Article  Google Scholar 

  9. A.A. Nayeb-Hashemi, J.B. Clark, A.D. Pelton, Bull. Alloys Phase Diagr. 5, 365 (1984)

    Article  Google Scholar 

  10. P.H.R. Pereira, Y. Huang, M. Kawasaki, T.G. Langdon, J. Mater. Res. 32, 4541 (2017)

    Article  Google Scholar 

  11. M. Furui, H. Kitamura, H. Anada, T.G. Langdon, Acta Mater. 55, 1083 (2007)

    Article  Google Scholar 

  12. K. Lin, Z.X. Kang, Q. Fang, J.Y. Zhang, Adv. Eng. Mater. 16, 381 (2014)

    Article  Google Scholar 

  13. H.P. Yang, M.W. Fu, S. To, G.C. Wang, Mater. Des. 112, 151 (2016)

    Article  Google Scholar 

  14. M. Karami, R. Mahmudi, Mater. Sci. Eng. A 576, 156 (2013)

    Article  Google Scholar 

  15. H. Matsunoshita, K. Edalati, M. Furui, Z. Horita, Mater. Sci. Eng. A 640, 443 (2015)

    Article  Google Scholar 

  16. F.R. Cao, G.Q. Xue, G.M. Xu, Mater. Sci. Eng. A 704, 360 (2017)

    Article  Google Scholar 

  17. R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50, 1 (2005)

    Article  Google Scholar 

  18. A.P. Gerlich, Mater. Sci. Technol. 33, 1139 (2017)

    Article  Google Scholar 

  19. Z.Y. Ma, A.H. Feng, D.L. Chen, J. Shen, Crit. Rev. Solid State Mater. Sci. 43, 269 (2018)

    Article  Google Scholar 

  20. G.K. Padhy, C.S. Wu, S. Gao, J. Mater. Sci. Technol. 34, 1 (2018)

    Article  Google Scholar 

  21. A. Raja, P. Biswas, V. Pancholi, Mater. Sci. Eng. A 725, 492 (2018)

    Article  Google Scholar 

  22. F. Khan, S.K. Panigrahi, J. Alloys Compd. 747, 71 (2018)

    Article  Google Scholar 

  23. G.H. Cao, D.T. Zhang, F. Chai, W.W. Zhang, C. Qiu, Mater. Sci. Eng. A 642, 157 (2015)

    Article  Google Scholar 

  24. A. Orozco-Caballero, M. Álvarez-Leal, P. Hidalgo-Manrique, C.M. Cepeda-Jiménez, O.A. Ruano, F. Carreño, Mater. Sci. Eng. A 680, 329 (2017)

    Article  Google Scholar 

  25. P. Minárik, J. Veselý, J. Čížek, M. Zemková, T. Vlasák, T. Krajňák, J. Kubásek, R. Krála, D. Hofman, J. Stráská, Mater. Charact. 140, 207 (2018)

    Article  Google Scholar 

  26. L.L. Tang, Y.H. Zhao, R.K. Islamgaliev, R.Z. Valiev, Y.T. Zhu, J. Alloys Compd. 721, 577 (2017)

    Article  Google Scholar 

  27. J.P. Young, H. Askari, Y. Hovanski, M.J. Heiden, D.P. Field, Mater. Charact. 101, 9 (2015)

    Article  Google Scholar 

  28. I. Roy, M. Chauhan, E.J. Lavernia, F.A. Mohamed, Metall. Mater. Trans. A 37, 721 (2006)

    Article  Google Scholar 

  29. O.V. Rofman, Philos. Mag. 98, 2120 (2018)

    Article  Google Scholar 

  30. M. Kawasaki, K. Kubota, K. Higashi, T.G. Langdon, Mater. Sci. Eng. A 429, 334 (2006)

    Article  Google Scholar 

  31. X.H. Liu, H.B. Zhan, S.H. Gu, Z.K. Qu, R.Z. Wu, M.L. Zhang, Mater. Sci. Eng. A 528, 6157 (2011)

    Article  Google Scholar 

  32. F.R. Cao, F. Xia, H.L. Hou, H. Ding, Z.Q. Li, Mater. Sci. Eng. A 637, 89 (2015)

    Article  Google Scholar 

  33. T.G. Langdon, Acta Metall. Mater. 42, 2437 (1994)

    Article  Google Scholar 

  34. T.G. Langdon, J. Mater. Sci. 44, 5998 (2009)

    Article  Google Scholar 

  35. F.A. Mohamed, Materials 4, 1194 (2011)

    Article  Google Scholar 

  36. T.G. Langdon, Metall. Trans. A 13, 689 (1982)

    Article  Google Scholar 

  37. O.A. Ruano, J. Wadsworth, O.D. Sherby, J. Mater. Sci. 20, 3735 (1985)

    Article  Google Scholar 

  38. V. Jain, R.S. Mishra, R. Verma, E. Essadiqi, Scr. Mater. 68, 447 (2013)

    Article  Google Scholar 

  39. M. Álvarez-Leal, A. Orozco-Caballero, F. Carreño, O.A. Ruano, Mater. Sci. Eng. A 710, 240 (2018)

    Article  Google Scholar 

  40. H. Shahmir, J.Y. He, Z.P. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A 685, 342 (2017)

    Article  Google Scholar 

  41. A. Orozco-Caballero, M. Álvarez-Leal, D. Verdera, P. Rey, O.A. Ruano, F. Carreño, Mater. Des. 125, 116 (2017)

    Article  Google Scholar 

  42. W.J. Kim, M.J. Kim, J.Y. Wang, Mater. Sci. Eng. A 516, 17 (2009)

    Article  Google Scholar 

  43. K. Sotoudeh, P.S. Bate, Acta Mater. 58, 1909 (2010)

    Article  Google Scholar 

  44. K. Sotoudeh, N. Ridley, F.J. Humphreys, P.S. Bate, Mat.-wiss. u.Werkstofftech 43, 794 (2012)

    Article  Google Scholar 

  45. W.J. Kim, I.B. Park, Scr. Mater. 68, 179 (2013)

    Article  Google Scholar 

  46. T.J. Lee, Y.B. Park, W.J. Kim, Mater. Sci. Eng. A 580, 133 (2013)

    Article  Google Scholar 

  47. R. Raj, M.F. Ashby, Metall. Trans. A 2, 1113 (1971)

    Article  Google Scholar 

  48. F.R. Cao, H. Ding, Y.L. Li, G. Zhou, J.Z. Cui, Mater. Sci. Eng. A 527, 2335 (2010)

    Article  Google Scholar 

  49. M. Kawasaki, R.B. Figueiredo, T.G. Langdon, Adv. Eng. Mater. 18, 127 (2016)

    Article  Google Scholar 

  50. H. Masuda, T. Kanazawa, H. Tobe, E. Sato, Scr. Mater. 149, 84 (2018)

    Article  Google Scholar 

  51. R. Korla, A.H. Chokshi, Metall. Mater. Trans. A 45A, 698 (2014)

    Article  Google Scholar 

  52. T.B. Massalski, H. Okamoto, P.R. Subramanian, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Metals Park, 2011)

    Google Scholar 

  53. G.S. Sun, L.X. Du, J. Hu, H. Xie, R.D.K. Misra, Mater. Des. 117, 223 (2017)

    Article  Google Scholar 

  54. M.E. Hosseini, S.J. Hosseinipour, M.B. Jooybari, Iran. J. Sci. Technol. Trans. Mech. Eng. 42, 41 (2018)

    Article  Google Scholar 

  55. E.I. Galindo-Nava, G. Torres-Villasenor, P.E.J. Rivera-Diaz-del-Castillo, Mater. Sci. Technol. 31, 677 (2015)

    Article  Google Scholar 

  56. A.H. Chokshi, A.K. Mukherjee, T.G. Langdon, Mater. Sci. Eng. R 10, 237 (1993)

    Article  Google Scholar 

  57. A.H. Chokshi, J. Mater. Sci. 21, 2073 (1986)

    Article  Google Scholar 

  58. H.J. Frost, M.F. Ashby, Deformation Mechanism Maps (Pergamon Press, Oxford, 1982), p. 21

    Google Scholar 

Download references

Acknowledgements

This work was supported by the key project of National Natural Science Foundation of China [Project No. 51334006]. The author (Furong Cao) also appreciates the help from Si Yuan Liu and Rui Kang Su during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Rong Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, F.R., Xue, G.Q., Zhou, B.J. et al. High-Temperature Deformation Behavior of Duplex Mg–8.41Li–1.80Al–1.77Zn Alloy Processed by Friction Stir Processing. Met. Mater. Int. 25, 570–583 (2019). https://doi.org/10.1007/s12540-018-00209-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-00209-8

Keywords

Navigation