Skip to main content
Log in

Precipitation hardening

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The topic of precipitation hardening is critically reviewed, emphasizing the influence of precipitates on the CRSS or yield strength of aged alloys. Recent progress in understanding the statistics of dislocation-precipitate interactions is highlighted. It is shown that Pythagorean superposition for strengthening by random mixtures of localized obstacles of different strengths is rigorously obeyed in the limit of very weak obstacles; this had been known previously as a result of computer simulation experiments. Some experimental data are discussed in light of this prediction. All of the currently viable mechanisms of precipitation hardening are reviewed. It is demonstrated that all versions of the theory of coherency hardening are woefully inadequate, while the theory of order hardening is capable of accurately predicting the contribution of γ′ precipitates to the CRSS of aged Ni-Al alloys. It is also convincingly shown that a new theory based on computer simulation experiments of the motion of dislocations through arrays of obstacles having a finite range of interaction cannot explain these same data, and is of doubtful validity in other instances for which its success has been proclaimed. A new theory of hardening by spinodal decomposition is proposed. It is based on the statistics of interaction between dislocations and diffuse attractive obstacles, and is shown to be in very good quantitative agreement with much of the limited data available. Some of the problems that remain to be addressed and solved are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Amplitude of a composition modulation during spinodal decomposition.

a(ap) a(ap):

Lattice parameter of the matrix (precipitate).

B :

Dimensionless variable in the order strengthening theory of Ardell, Munjal, and Chellman.

b bp:

Burgers vectors of total (partial) dislocations.

C C0:

Solute concentration (initial value) in atom fraction.

C G :

A constant in an expression for the maximum interaction force in modulus hardening.

Csl, C’sl:

Empirical constants in the theory of Schwarz and Labusch for energy conserving and energy storing interactions, respectively.

c ij :

Single crystal elastic moduli.

D :

Spacing of the dislocation pair in order strengthening.

dI dII:

Effective particle diameters for the leading (I) and trailing (II) dislocations of a pair at the critical configuration during order strengthening.

F m :

Maximum force of interaction that an obstacle can withstand.

F mz :

Maximum force of interaction between a precipitate and a dislocation on a slip plane at distance z from the particle center.

f :

Volume fraction of precipitate.

G, G111:

Shear modulus on the slip plane in the slip direction of the matrix of an fcc crystal.

Giso :

Shear modulus of the matrix of an isotropic crystal.

G p :

Shear modulus of the precipitate.

ΔG GP :

G

g :

Distribution function of the variable contained within the parentheses.

h :

Twice the amplitude of a zig-zag dislocation in the presence of attractive obstacles.

J c :

A constant in Cahn’s theory of spinodal de composition.

j :

The number of dislocations in a procession during the shearing of ordered precipitates.

K :

Force of interaction between two partial dislocations of Burgers vector bp.

k :

Index representing successive obstacles encountered

L :

Effective spacing of obstacles along a dislocation at the critical configuration.

L F :

The Friedel spacing.

L M :

The Mott spacing.

L s :

The square lattice spacing.

LI,LII:

Effective spacings of obstacles along the leading and trailing dislocations of a pair at the critical configuration in order strengthening.

:

Edge length of a cube containing one obstacle on average.

l :

Effective particle diameter for the trailing partial at the critical configuration in stackingfault strengthening.

m :

An exponent appearing in equations for the maximum force and CRSS due to modulus hardening.

n :

Number of obstacles contained within a dimensionless search area generated by circle rolling.

n s :

Number of obstacles per unit area in the glide plane.

n v :

Number of obstacles or precipitates per unit volume.

p :

An adjustable parameter in the Hüther and Reppich theory of order strengthening by strong pair coupling.

q :

An exponent in an empirical addition rule.

R(R *):

Radius (dimensionless radius) of a curved dislocation.

Rc(R *c ):

As above, at the critical breaking stress.

r :

Radius of a spherical precipitate.

r 0 :

Inner cut-off distance in the expression for the dislocation line energy.

r s :

Planar radius of a spherical precipitate.

S(S *):

Area (dimensionless area) swept out by a dislocation in circle rolling.

S *c :

Dimensionless critical area swept out by a dislocation in circle rolling, containing one obstacle.

S F :

Area swept out by a dislocation in Friedel statistics.

s 0 :

Dimensionless, radius-independent search area at the critical configuration in circle rolling.

s 0i :

As above, but containing on average one obstacle of typei in a random mixture of distinct obstacles.

U 0 :

Energy of interaction between an obstacle and a dislocation.

u :

A dimensionless variable in the order hardening theory of Ardell, Munjal, and Chellman, equal to 2〈rs〉/LF.

V :

A parameter related to the maximum force of interaction between a flexible edge dislocation and a spherical coherent precipitate.

wm(wp:

Ribbon width of a stacking-fault in the matrix (precipitate).

X i :

Fraction of obstacles of typei in the slip plane; an areal concentration.

x :

Spatial coordinate parallel to an initially straight dislocation line.

Y :

An elastic modulus resisting lattice deformation during spinodal decomposition.

y :

Spatial coordinate measuring the displacements of a dislocation from a straight line.

z:

Distance between the center of a spherical precipitate and the slip plane of a dislocation,

α:

A coefficient in the expression for the dislocation line tension.

βc :

Dimensionless critical force exerted by a dislocation on an obstacle.

Γ:

Line tension of a dislocation.

Γe, Γs :

Line tension of a pure edge, screw dislocation.

γs :

Energy of a matrix-precipitate interface created by slip.

γapb :

Antiphase boundary energy on the slip plane of an ordered precipitate.

γsfm :

Stacking-fault energy of the matrix.

γsfp :

Stacking-fault energy of the precipitate.

〈γsf〉:

Average stacking-fault energy of the matrix and precipitate phases.

Δγ γsfm− γ:

sfP

Δ :

Fractional misfit between the lattice parameters of the matrix and precipitate phases,

ε:

Constrained strain; the fractional misfit between anin situ coherent precipitate and the matrix.ξ Z/r.

η:

A measure of the lattice strains produced during spinodal decomposition.

η0 :

Parameter measuring the ratio of the obstacle range and the square root of its breaking strength.

θc :

Critical angle through which the dislocation turns at an obstacle in,e.g., circle rolling.

Λ:

Outer cut-off distance in the expression for the dislocation line energy.

λ:

Wavelength of a composition modulation during spinodal decomposition.

v(vp:

Poisson’s ratio of the matrix (precipitate).

ξ:

Angle between the dislocation line and its Burgers vector.

τc *c ):

CRSS (dimensionless CRSS) predicted theoretically

gT **c :

Reduced theoretical CRSS; gTc/β 3/2c

gT **o :

Experimentally determined value of gT **c relevant to data on order hardening.

gTci (gT *ci ):

CRSS (dimensionless CRSS) predicted theoretically for obstacles of typei in a random mixture of distinct obstacles.

gTcc:

Theoretically predicted CRSS due to chemical hardening.

gTcG:

Theoretically predicted CRSS due to modulus hardening.

gTcO:

Theoretically predicted CRSS due to order hardening.

gTcS:

Theoretically predicted by CRSS due to hardening by spinodal decomposition.

gTce :

Theoretically predicted CRSS due to coherency hardening.

gT :

Theoretically predicted CRSS due to stackingfault strengthening.

gTss :

Contribution of the solid solution matrix to the CRSS.

gT01, τ02 :

Contributions of Class 1 and Class 2 precipitates to the CRSS in alloys aged to contain bimodal γ′ particle size distributions.

gTt :

Experimentally measured CRSS of a crystal.

Δτ:

Contribution of precipitates to the CRSS determined experimentally.

ΔgT0:

As above, in order strengthening,

Δτs:

As above, in hardening by spinodal decomposition.

Δτε:

As above, in coherency hardening.

ΔgTγ:

As above, in stacking-fault strengthening.

θ:

Angle between tangential directions of the dislocation line at successive obstacles in circle rolling.

θ i :

Similar to θ, but for obstacles of typei in a random mixture of distinct obstacles.

θo :

Lower limit on θ which defines a boundary of the search area in circle rolling that contains one obstacle on average.

χ :

A constant in the theory of coherency strengthening.

ψc :

Critical breaking angle (cusp angle) included between adjacent arms of the dislocation at an obstacle.

ψw :

The difference between the maximum and minimum values of ψc.

Ω(Ω*):

Range (dimensionless range) of interaction between an obstacle and a dislocation.

〈〉:

Symbols denoting the average value of the quantity contained within. max, min, Subscripts denoting maximum, minimum, exp, experimental, and/or theoretical values of a theor parameter or variable.

References

  1. A. Wilm:Metallurgie, 1991, vol. 8, p. 225.

    Google Scholar 

  2. P. D. Merica, R. G. Waltenberg, and H. Scott:Trans. AIME, 1920, vol. 64, p. 41.

    Google Scholar 

  3. R. F. Mehl and L. K. Jetter:Age Hardening of Metals, American Society for Metals, Cleveland, OH, 1940, p. 342.

    Google Scholar 

  4. E. Orowan:Z. Phys., 1934, vol. 89, p. 634.

    Article  Google Scholar 

  5. G.I. Taylor:Proc. Roy. Soc. (London) A, 1934, vol. 145, p. 362.

    Article  CAS  Google Scholar 

  6. M. Polanyi:Z. Phys., 1934, vol. 89, p. 660.

    Article  CAS  Google Scholar 

  7. N.F. Mott and F.R.N. Nabarro:Proc. Phys. Soc., 1940, vol. 52, p. 86.

    Article  CAS  Google Scholar 

  8. E. Orowan:Symposium on Internal Stresses in Metals and Alloys, Session III Discussion, Institute of Metals, London, England, 1948, p. 451.

    Google Scholar 

  9. G.C. Smith:Prog. Metal Phys., 1950, vol. 1, p. 163.

    Article  Google Scholar 

  10. A. Kelly and R.B. Nicholson:Prog. Mater. Sci., 1963, vol. 10, p. 149.

    Google Scholar 

  11. L. M. Brown and R.K. Ham:Strengthening Methods in Crystals, A. Kelly and R. B. Nicholson, eds., Halsted Press Division, John Wiley & Sons, New York, NY, 1971, p. 9.

    Google Scholar 

  12. F.R.N. Nabarro:J. Less-Common Metals, 1972, vol. 28, p. 257.

    Article  CAS  Google Scholar 

  13. J. Friedel:Les Dislocations, Gauthier-Villars, Paris, France, 1956, p. 205.

    Google Scholar 

  14. J. Friedel:Electron Microscopy and Strength of Crystals, G. Thomas and J. Washbum, eds., Interscience, John Wiley & Sons, New York, NY, 1962, p. 605.

    Google Scholar 

  15. R.L. Fleischer and W. R. Hibbard, Jr.:The Relation between the Structure and Mechanical Properties of Metals, Her Majesty’s Stationery Office, London, England, 1963, p. 261.

    Google Scholar 

  16. R. Labusch:Z. Phys., 1962, vol. 167, p. 452.

    Article  CAS  Google Scholar 

  17. U.F. Kocks:Can. J. Phys., 1967, vol. 45, p. 737.

    CAS  Google Scholar 

  18. U.F. Kocks:Trans. Japan. Inst. Metals, 1968, vol. 9, supplement, p. 1.

    Google Scholar 

  19. J. E. Dorn, P. Guyot, and T. Stefansky:Physics of Strength and Plasticity, A.S. Argon, ed., M.I.T. Press, Cambridge, MA, 1969, p. 133.

    Google Scholar 

  20. U.F. Kocks:Phil. Mag., 1966, vol. 13, p. 541.

    Article  Google Scholar 

  21. A.J.E. Foreman and M. J. Makin:Phil. Mag., 1966, vol. 14, p. 911.

    Article  CAS  Google Scholar 

  22. J.W. Mrris, Jr. and D.H. Klahn:J. Appl. Phys., 1974, vol. 45, p. 2027.

    Article  Google Scholar 

  23. K. Hanson, J.W. Mrris and Jr.:J. Appl. Phys., 1975, vol. 46, p. 983.

    Article  Google Scholar 

  24. A. Melander:Scand. J. Metall., 1978, vol. 7, p. 109.

    CAS  Google Scholar 

  25. R. Labusch:J. Appl. Phys., 1977, vol. 48, p. 4550.

    Article  Google Scholar 

  26. N.F. Mott:Imperfections in Nearly Perfect Crystals, W. Shockley, J. H. Hollomon, R. Maurer, and F. Seitz, eds., John Wiley & Sons, New York, NY, 1952, p. 173.

    Google Scholar 

  27. B. Riddhagni and R.M. Asimow:J. Appl. Phys., 1968, vol. 39, p. 4144.

    Article  CAS  Google Scholar 

  28. R. Labusch:Phys. Stat. Sol., 1970, vol. 41, p. 659.

    Article  Google Scholar 

  29. R. Labusch:Acta Metall., 1972, vol. 20, p. 917.

    Article  Google Scholar 

  30. R. Schindlmayr and J. Schlipf:Phil. Mag., 1975, vol. 31, p. 13.

    Article  CAS  Google Scholar 

  31. U.F. Kocks, A. S. Argon, and M. F. Ashby:Prog. Mater. Sci., 1975, vol. 19, p. 1.

    Article  Google Scholar 

  32. R.B. Schwarz and R. Labusch:J. Appl. Phys., 1978, vol. 49, p. 5174.

    Article  CAS  Google Scholar 

  33. T. J. Koppenaal and D. Kuhlmann-Wilsdorf:Appl. Phys. Lett., 1964, vol. 4, p. 59.

    Article  Google Scholar 

  34. N. Büttner and E. Nembach: Deformation of Multi-Phase and Particle Containing Materials, Proc. 4th Risø Int. Symposium on Metallurgy and Materials Science, J.B. Bilde-Sørensen, N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt, eds., Riseø National Laboratory, Roskilde, Denmark, 1983, p. 189.

    Google Scholar 

  35. G. Neite, M. Sieve, M. Mrotzek, and E. Nembach:Deformation of Multi-Phase and Particle Containing Materials, Proc. 4th Risø Int. Symposium on Metallurgy and Materials Science, J.B. Bilde-Sørensen, N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt, eds., Risø National Laboratory, Roskilde, Denmark, 1983, p. 447.

    Google Scholar 

  36. A.J.E. Foreman and M.J. Makin:Can. J. Phys., 1967, vol. 45, p. 511.

    CAS  Google Scholar 

  37. K. Hanson, J.W. Mrris and Jr.:J. Appl. Phys., 1975, vol. 46, p. 2378.

    Article  Google Scholar 

  38. N. Louat:Strength of Metals and Alloys, Proc. 5th Int. Conf. on the Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds. Pergamon Press, Oxford, England, vol. 2, 1979, p. 941.

    Google Scholar 

  39. A. Melander:Phys. Stat. Sol.(a), 1977, vol. 43, p. 223.

    Article  Google Scholar 

  40. G. DeWit and J. S. Koehler:Phys. Rev., 1959, vol. 116, p. 1113.

    Article  CAS  Google Scholar 

  41. E. Nembach:Scripta Metall., 1982, vol. 16, p. 1261.

    Article  CAS  Google Scholar 

  42. C. Zener:Elasticity and Anelasticity of Metals, University of Chicago Press, Chicago, IL, 1948, p. 12.

    Google Scholar 

  43. J. Turley and G. Sines:J. Phys. D: Appl. Phys., 1971, vol. 4, p. 264.

    Article  CAS  Google Scholar 

  44. A. Kelly and G. W. Groves:Crystallography and Crystal Defects, Addison-Wesley, Reading, MA, 1970, p. 163.

    Google Scholar 

  45. H. Lilholt:Deformation of Multi-Phase and Particle Containing Materials, Proc. 4th Risøø Int. Symposium on Metallurgy and Materials Science, J.B. Bilde-Sørensen, N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt, eds., Risø National Laboratory, Roskilde, Denmark, 1983, p. 381.

    Google Scholar 

  46. U. F. Kocks:Physics of Strength and Plasticity, A. S. Argon, ed., M.I.T. Press, Cambridge, MA, 1969, p. 143.

    Google Scholar 

  47. M. F. Ashby:Physics of Strength and Plasticity, A. S. Argon, ed., M.I.T. Press, Cambridge, MA, 1969, p. 113.

    Google Scholar 

  48. R. Ebeling and M. F. Ashby:Phil. Mag., 1966, vol. 13, p. 805.

    Article  CAS  Google Scholar 

  49. E. Nembach and M. Martin:Acta Metall, 1980, vol. 28, p. 1069.

    Article  CAS  Google Scholar 

  50. A. Kelly and M. E. Fine:Acta Metall., 1957, vol. 5, p. 365.

    Article  CAS  Google Scholar 

  51. S.D. Harkness and J.J. Hren:Metall. Trans., 1970, vol. 1, p. 43.

    CAS  Google Scholar 

  52. V. Gerold:Dislocations in Solids, F. R. N. Nabarro, ed., North-Holland, Amsterdam, The Netherlands, 1979, vol. 4, p. 220.

    Google Scholar 

  53. P. B. Hirsch and A. Kelly:Phil. Mag., 1965, vol. 12, p. 881.

    Article  Google Scholar 

  54. V. Gerold and K. Hartmann:Trans. Japan. Inst. Metals, 1968, vol. 9, supplement, p. 509.

    CAS  Google Scholar 

  55. P.C. J. Gallagher:Metall. Trans., 1970, vol. 1, p. 2429.

    CAS  Google Scholar 

  56. R. W. Weeks, S. R. Pati, M. F. Ashby, and P. Barrand:Acta Metall., 1969, vol. 17, p. 1403.

    Article  CAS  Google Scholar 

  57. M. Comninou and J. Dundurs:J. Appl. Phys., 1972, vol. 43, p. 2461.

    Article  Google Scholar 

  58. S. D. Gavazza and D. M. Barnett:Int. J. Engng. Sci., 1974, vol. 12, p. 1025. 59. G. Knowles and P. M. Kelly: Effect of Second-Phase Particles on the Mechanical Properties of Steel, The Iron and Steel Institute, London, England, 1971, p. 9.

    Article  Google Scholar 

  59. A. Melander and P. Å. Persson:Acta Metall., 1978, vol. 26, p. 267.

    Article  CAS  Google Scholar 

  60. E. Nembach:Phys. Stat. Sol.(a), 1983, vol. 78, p. 571.

    Article  Google Scholar 

  61. K.-H. Dünkeloh, G. Kralik, and V. Gerold:Z. Metallke, 1974, vol. 65, p. 773.

    Google Scholar 

  62. K. C. Russell and L. M. Brown:Acta Metall., 1972, vol. 20, p. 969.

    Article  CAS  Google Scholar 

  63. I. A. Ibrahim and A. J. Ardell:Mater. Sci. and Engr., 1978, vol. 36, p. 139.

    Article  CAS  Google Scholar 

  64. V. Gerold and H. Haberkorn:Phys. Stat. Sol., 1966, vol. 16, p. 675.

    Article  CAS  Google Scholar 

  65. H. Gleiter:Z. Angew. Physik, 1967, vol. 23, p. 108.

    CAS  Google Scholar 

  66. V. Gerold:Acta Metall., 1968, vol. 16, p. 823.

    Article  Google Scholar 

  67. B. Jansson and A. Melander:Scripta Metall., 1978, vol. 12, p. 497.

    Article  Google Scholar 

  68. H. Gleiter:Acta Metall., 1968, vol. 16, p. 829.

    Article  Google Scholar 

  69. V. Gerold and H.-M. Pham:Z. Metallik., 1980, vol. 71, p. 286.

    CAS  Google Scholar 

  70. V. Gerold and H.-M. Pham:Scripta Metall., 1979, vol. 13, p. 895.

    Article  CAS  Google Scholar 

  71. H. Wiedersich:Trans. Japan. Inst. Metals, 1968, vol. 9 supplement, p. 34.

    Google Scholar 

  72. J.D. Livingston:Trans. AIME, 1959, vol. 215, p. 566.

    CAS  Google Scholar 

  73. V. A. Phillips:Phil. Mag., 1965, vol. 11, p. 775.

    Article  CAS  Google Scholar 

  74. M. Witt and V. Gerold:Scripta Metall., 1969, vol. 3, p. 371.

    Article  CAS  Google Scholar 

  75. K. E. Amin, V. Gerold, and G. Kralik:J. Mater. Sci., 1975, vol. 10, p. 1519.

    Article  CAS  Google Scholar 

  76. I. A. Ibrahim and A. J. Ardell:Acta Metall., 1977, vol. 25, p. 1231.

    Article  CAS  Google Scholar 

  77. K. Matsuura, M. Kitamura, and K. Watanabe:Trans. Japan. Inst. Metals, 1978, vol. 19, p. 53.

    CAS  Google Scholar 

  78. H. Wendt and R. Wagner:Acta Metall., 1980, vol. 28, p. 709.

    Article  Google Scholar 

  79. S. R. Yeomans and P. G. McCormick:Mater. Sci. and Engr., 1978, vol. 34, p. 101.

    Article  CAS  Google Scholar 

  80. M. Hansen:Constitution of Binary Alloys, 2nd ed., McGraw-Hill Book Co., New York, NY, 1958, p. 596.

    Google Scholar 

  81. K. Nakajima and K. Numakura:Phil. Mag., 1965, vol. 12, p, 361.

    Article  CAS  Google Scholar 

  82. P.A. Flinn, G.M. McManus, and J.A. Rayne:J. Phys. Chem. Solids, 1960, vol. 15, p. 189.

    Article  CAS  Google Scholar 

  83. Z. S. Basinski, W. Hume-Rothery, and A. L. Sutton:Proc. Roy. Soc. (London) A, 1955, vol. 229, p. 459.

    Article  CAS  Google Scholar 

  84. Z. S. Basinski and J. W. Christian:J. Inst. Metals, 1952, vol. 80, p. 659.

    CAS  Google Scholar 

  85. W. B. Pearson:A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Oxford, England, 1958, p. 733.

    Google Scholar 

  86. R.D. Dragsdorf:J. Appl. Phys., 1960, vol. 31, p. 434.

    Article  CAS  Google Scholar 

  87. H. Haberkorn:Mater. Sci. and Engr., 1968/69, vol. 3, p. 302.

    Article  Google Scholar 

  88. N.J. Long, M.H. Loretta, and C.H. Lloyd:Acta Metall., 1980, vol. 28, p. 709.

    Article  CAS  Google Scholar 

  89. H. Haberkorn:Phys. Stat. Sol., 1966, vol. 15, p. 153.

    Article  CAS  Google Scholar 

  90. H. Haberkorn and V. Gerold:Phys. Stat. Sol., 1966, vol. 15, p. 167.

    Article  CAS  Google Scholar 

  91. P. B. Hirsch and F. J. Humphries:Physics of Strength and Plasticity, A.S. Argon, ed., M.I.T. Press, Cambridge, MA, 1969, p. 189.

    Google Scholar 

  92. H. Gleiter and E. Hornbogen:phhys. Stat. Sol., 1965, vol. 12, p. 235.

    Article  CAS  Google Scholar 

  93. J.L. Castagné:J. de Physique, 1966, vol. 27, pp. C3–233.

    Google Scholar 

  94. R. K. Ham:Trans. Japan. Inst. Metals, 1968, vol. 9 supplement, p. 52.

    Google Scholar 

  95. P. Guyot:Phil. Mag., 1971, vol. 24, p. 987.

    Article  Google Scholar 

  96. D. Raynor and J. M. Silcock:Metal Sci. J., 1970, vol. 4, p. 121.

    CAS  Google Scholar 

  97. W. Hüther and B. Reppich:Z. Metallkde, 1978, vol. 69, p. 628.

    Google Scholar 

  98. J. M. Oblak, D. F. Paulonis, and D. S. Duvall:Metall. Trans., 1974, vol. 5, p. 143.

    Article  CAS  Google Scholar 

  99. J. Greggi and W. A. Soffa:Strength of Metals and Alloys, Proc. 5th Int. Conf. on the Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, England, 1979, vol. 1, p. 651.

    Google Scholar 

  100. A. J. Ardell, V. Munjal, and D. J. Chellman:Metall. Trans. A, 1976, vol. 7A, p. 1263.

    CAS  Google Scholar 

  101. A. J. Ardell:Metal. Sci. J., 1980, vol. 14, p. 221.

    Article  CAS  Google Scholar 

  102. V. Munjal and A.J. Ardell:Acta Metall., 1975, vol. 23, p. 513.

    Article  CAS  Google Scholar 

  103. N.T. Travina and G.I. Nosova:Phys. Met. Metallogr., 1970, vol. 29, p. 119.

    Google Scholar 

  104. V.A. Phillips:Acta Metall., 1966, vol. 14, p. 1533.

    Article  CAS  Google Scholar 

  105. M. Gröhlich, P. Haasen, and G. Frommeyer:Scripta Metall., 1982, vol. 16, p. 367.

    Article  Google Scholar 

  106. M.M. Dawance, D.H. Ben Israel, and M.E. Fine:Acta Metall., 1964, vol. 12, p. 705.

    Article  Google Scholar 

  107. M.C. Chaturvedi, D.J. Lloyd, and D.W. Chung:Metal Sci. J., 1976, vol. 10, p. 373.

    CAS  Google Scholar 

  108. L. K. Singhal and J. W. Martin:Acta Metall., 1968, vol. 16, p. 947.

    Article  CAS  Google Scholar 

  109. A. Melander and P.Å. Persson:Metal Sci. J., 1978, vol. 13,p. 391.

    Google Scholar 

  110. J. L. Castagné, F. Lecroisey, and A. Pineau:C. R. Acad. Sci. Paris, 1968, vol. 266, p. 510.

    Google Scholar 

  111. A. Pineau, F. Lecroisey, J.L. Castagné, and M. Sindzingre:Acta Metall., 1969, vol. 17, p. 905.

    Article  CAS  Google Scholar 

  112. V. Martens and E. Nembach:Acta Metall., 1975, vol. 23, p. 149.

    Article  CAS  Google Scholar 

  113. B. Reppich, P. Schepp, and G. Wehner:Acta Metall., 1982, vol. 30, p. 95.

    Article  CAS  Google Scholar 

  114. A. Thompson and J. A. Brooks:Acta Metall., 1982, vol. 30, p. 2197.

    Article  CAS  Google Scholar 

  115. B. Noble, S.J. Harris, and K. Dinsdale:Metal Sci. J., 1982, vol. 16, p. 425.

    Article  CAS  Google Scholar 

  116. M. Rembges, P. Haasen, and L. Schultz:Z. Metallke, 1976, vol. 67, p. 330.

    CAS  Google Scholar 

  117. J. W. Goodrum and B. G. LeFevre:Metall. Trans. A, 1977, vol. 8A, p. 939.

    CAS  Google Scholar 

  118. W. Hüther and B. Reppich:Mater. Sci. and Engr., 1979, vol. 39, p. 247.

    Article  Google Scholar 

  119. M.C. Chaturvedi and D.W. Chung:Metall. Trans. A, 1981, vol. 12A, p. 77.

    Google Scholar 

  120. G.G. Brown and J.A. Whiteman:J. Aust. Inst. Metals, 1969, vol. 14, p. 217.

    CAS  Google Scholar 

  121. D. H. Jack and R. W. K. Honeycombe:Acta Metall., 1972, vol. 20, p. 787.

    Article  CAS  Google Scholar 

  122. I.O. Smith and M.G. White:Metall. Trans. A, 1976, vol. 7A, p. 293.

    CAS  Google Scholar 

  123. R. Taillard and A. Pineau:Mater. Sci. and Engr., 1982, vol. 56, p. 219.

    Article  CAS  Google Scholar 

  124. A.J. Ardell and R.B. Nicholson:J. Phys. Chem. Solids, 1966, vol. 27, p. 1793.

    Article  CAS  Google Scholar 

  125. D. J. Chellman and A. J. Ardell:Acta Metall., 1974, vol. 22, p. 577.

    Article  CAS  Google Scholar 

  126. A. J. Ardell:Acta Metall., 1968, vol. 16, p. 511.

    Article  CAS  Google Scholar 

  127. E.Z. Vintaikin:Sov. Phys. Dokl., 1966, vol. 11, p. 91.

    Google Scholar 

  128. H. Pottebohm, G. Neite, and E. Nembach:Mater. Sci. and Engr., 1983, vol. 60, p. 189.

    Article  CAS  Google Scholar 

  129. A. J. Ardell, D. J. Chellman, and V. Munjal:Proc. 4th Int. Conf. on the Strength of Metals and Alloys, Lab. de Phys. du Solide, eds., Nancy, France, 1976, vol. 1, p. 209.

    Google Scholar 

  130. R.F. Decker and J.R. Mihalisin.Trans.ASM, 1969,vol. 62,p. 481.

    CAS  Google Scholar 

  131. B. A. Parker:J. Aust. Inst. Metals, 1969, vol. 14, p. 321.

    CAS  Google Scholar 

  132. P. Haasen and R. Labusch:Strength of Metals and Alloys, Proc. 5th Int. Conf. on the Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, England, 1979, vol. 1, p. 639.

    Google Scholar 

  133. E. Nembach:Z. Metallke, 1981, vol. 72, p. 401.

    CAS  Google Scholar 

  134. B. Reppich:Acta Metall., 1982, vol. 30, p. 87.

    Article  CAS  Google Scholar 

  135. I.M. Lifshitz and V.V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, p. 35.

    Article  Google Scholar 

  136. C. Wagner:E. Elektrochem., 1961, vol. 65, p. 581.

    CAS  Google Scholar 

  137. A. Melander and B. Jansson:Strength of Metals and Alloys, Proc. 5th Int. Conf. on the Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, England, 1979, vol. 1, p. 627.

    Google Scholar 

  138. V. Munjal and A. J. Ardell:Acta Metall., 1976, vol. 24, p. 827.

    Article  CAS  Google Scholar 

  139. E. Nembach and C.-K. Chow:Mater. Sci. and Engr., 1978, vol. 36, p. 271.

    Article  CAS  Google Scholar 

  140. D. J. Chellman and A. J. Ardell:Proc. 4th Int. Conf. on the Strength of Metals and Alloys, Lab. de Phys. du Solide, eds., Nancy, France, 1976, vol. l,p. 219.

    Google Scholar 

  141. R. Wagner:Czech. J. Phys. B, 1981, vol. 31, p. 198.

    Article  Google Scholar 

  142. J.W. Cahn:Acta Metall., 1963, vol. 11, p. 1275.

    Article  CAS  Google Scholar 

  143. M. Kato, T. Mori, and L. H. Schwartz:Acta Metall., 1980, vol. 28, p. 285.

    Article  CAS  Google Scholar 

  144. D. N. Ghista and W. D. Nix:Mater. Sci. and Engr., 1969, vol. 3, p. 293.

    Article  Google Scholar 

  145. Y. Hanai, T. Miyazaki, and H. Mori:J. Mater. Sci., 1979, vol. 14, p. 599.

    CAS  Google Scholar 

  146. B. Ditchek and L. H. Schwartz:Proc. 4th Int. Conf. on the Strength of Metals and Alloys, Lab. de Phys. du Solide, eds., Nancy, France, 1976, vol. 2, p. 593.

    Google Scholar 

  147. M. Kato, T. Mori, and L. H. Schwartz:Mater. Sci. and Engr., 1981, vol. 51, p. 25.

    Article  Google Scholar 

  148. D.L. Douglass and T. W. Barbee:J. Mater. Sci, 1969, vol. 4, p. 121.

    Article  CAS  Google Scholar 

  149. R.W. Carpenter:Acta Metall., 1967, vol. 15, p. 1297.

    Article  CAS  Google Scholar 

  150. L.H. Schwartz and J. T. Plewes:Acta Metall., 1974, vol. 22,p. 911.

    Article  CAS  Google Scholar 

  151. B.G. LeFevre, A.T. D’Annessa, and D. Kalish:Metall. Trans. A, 1978, vol. 9A, p. 577.

    CAS  Google Scholar 

  152. E. P. Butler and G. Thomas:Acta Metall., 1970, vol. 18, p. 347.

    Article  CAS  Google Scholar 

  153. R.J. Livak and G. Thomas:Acta Metall., 1971, vol. 19, p. 497.

    Article  CAS  Google Scholar 

  154. S.D. Dahlgren:Metall. Trans. A, 1977, vol. 8A, p. 347.

    CAS  Google Scholar 

  155. T. Miyazaki, E. Yajima, and H. Suga:Trans. Japan. Inst. Metals, 1971, vol. 12, p. 119.

    Google Scholar 

  156. R. Wagner:Strength of Metals and Alloys, Proc. 5th Int. Conf. on the Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, England, 1979, vol. 1, p. 645.

    Google Scholar 

  157. A. Datta and W. A. Soffa:Acta Metall., 1976, vol. 24, p. 987.

    Article  CAS  Google Scholar 

  158. P. Kratochvíl, M. Saxlová, and J. Pešička:Strength of Metals and Alloys, Proc. 5th Int. Conf. on the Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, England, 1979, vol. 1, p. 687.

    Google Scholar 

  159. V. I. Dotsenko, P. Kratochvíl, J. Pešička, and B. Wielke:Czech. J. Phys.B, 1981, vol. 31, p. 209.

    Article  Google Scholar 

  160. A.W. Thompson and J.C. Williams:Metall. Trans. A, 1984, vol. 15A, p. 931.

    CAS  Google Scholar 

  161. J. Greggi and W. A. Soffa:Scripta Metall., 1980, vol. 14, p. 649.

    Article  CAS  Google Scholar 

  162. P. Kratochvíl and P. Haasen:Scripta Metall., 1982, vol. 16, p. 197.

    Article  Google Scholar 

  163. B. Ditchek and L.H. Schwartz:Ann. Rev. Mater. Sci., R. A. Huggins, R. H. Bube, and D. A. Vermilyea, eds., Annual Reviews Inc., Palo Alto, CA, 1979, vol. 9, p. 219.

    Google Scholar 

  164. A. J. Bradley, W. F. Cox, and H. J. Goldschmidt:J. Inst. Metals, 1941, vol. 67, p. 189.

    CAS  Google Scholar 

  165. E.J. Lee and A.J. Ardell:Strength of Metals and Alloys, Proc. 5th Int. Conf. on the Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, England, 1979, vol. 1, p. 633.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “50th Anniversary of the Introduction of Dislocations” held at the fall meeting of the TMS-AIME in Detroit, Michigan in October 1984 under the TMS-AIME Mechanical Metallurgy and Physical Metallurgy Committees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardell, A.J. Precipitation hardening. Metall Trans A 16, 2131–2165 (1985). https://doi.org/10.1007/BF02670416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670416

Keywords

Navigation